精英家教网 > 高中数学 > 题目详情
4.在区间[-3,2]上随机取一个数x,则事件“1≤($\frac{1}{2}$)x≤4”发生的概率为$\frac{2}{5}$.

分析 首先求出满足不等式的x范围,由几何概型公式求解.

解答 解:∵$1≤{({\frac{1}{2}})^x}≤4∴-2≤x≤0$,所以所求概率为$P=\frac{{0-({-2})}}{{2-({-3})}}=\frac{2}{5}$;
故答案为:$\frac{2}{5}$

点评 本题考查了几何概型的概率求法;关键是求出满足条件的事件的范围,利用区间长度比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设x、y∈R+且$\frac{1}{x}$+$\frac{9}{y}$=1,则x+y的最小值为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,已知两定点E(1,0)、$G(6,\frac{3}{2})$,⊙C的方程为x2+y2-2mx+(10-2m)y+10m-29=0.当⊙C的半径取最小值时:
(1)求出此时m的值,并写出⊙C的标准方程;
(2)在x轴上是否存在异于点E的另外一个点F,使得对于⊙C上任意一点P,总有$\frac{{|{PE}|}}{{|{PF}|}}$为定值?若存在,求出点F的坐标,若不存在,请说明你的理由;
(3)在第(2)问的条件下,求$μ=\frac{{4{{|{PG}|}^2}-{{|{PE}|}^2}-6|{PE}|}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果函数f(x)=cos(ωx+$\frac{π}{4}$)(ω>0)的相邻两个对称中心之间的距离为$\frac{π}{6}$,则ω=(  )
A.3B.6C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tan(π+α)=2.
(1)求$\frac{sinα+2cosα}{3sinα-cosα}$
(2)求4sin2α-3sinαcosα-5cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三点能构成三角形,则(  )
A.m=4B.m≠4C.m≠-1D.m∈R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是定义在R上周期为4的奇函数,当0<x<2时,f(x)=log2x,则$f({\frac{7}{2}})$的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知y>x>0,且x+y=1,那么(  )
A.x<$\frac{x+y}{2}$<2xy<yB.2xy<x<$\frac{x+y}{2}$<yC.x<$\frac{x+y}{2}$<2xy<yD.x<2xy<$\frac{x+y}{2}$<y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.${∫}_{0}^{1}$1dx=1.

查看答案和解析>>

同步练习册答案