精英家教网 > 高中数学 > 题目详情
6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,则f(1)+f(2)+f(3)+…+f(2013)=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2$\sqrt{3}$D.2$\sqrt{3}$

分析 利用辅助角公式将将函数化简,根据三角函数是周期性函数,找出f(1),f(2),f(3)…的关系,可得答案.

解答 解:已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$=2sin($\frac{π}{3}x$),
周期T=$\frac{2π}{\frac{π}{3}}=6$
∴f(x)以6为周期的周期函数,
当x=1时,f(1)=2sin$\frac{π}{3}$=$\sqrt{3}$,
当x=2时,f(2)=2sin$\frac{2π}{3}$=$\sqrt{3}$,
当x=3时,f(3)=2sinπ=0,
当x=4时,f(4)=2sin$\frac{4π}{3}$=$-\sqrt{3}$,
当x=5时,f(5)=2sin$\frac{5π}{3}$=$-\sqrt{3}$
当x=6时,f(6)=2sinπ=0,
f(1)+f(2)+f(3)+…+f(2013)=335[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2)+f(3)
=335×0+f(1)+f(2)+f(3)
=2$\sqrt{3}$.
故选D.

点评 本题考察了三角函数的化简能力和周期的计算.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
已知y关于x的回归方程y=bx+1.05,则b=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E是线段AB上的点,且EB=1,则二面角C-DE-C1的正切值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AB=5,BC=2,∠B=60°,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值为(  )
A.5$\sqrt{3}$B.5C.-5$\sqrt{3}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)是定义在R上的连续函数,且$\lim_{x→1}\frac{f(x)}{x-1}$=2,则f(1)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合C={(x,y)|xy-3x+y+1=0},数列{an}的首项a1=3,且当n≥2时,点(an-1,an)∈C,数列{bn}满足bn=$\frac{1}{{1-{a_n}}}$.
(1)试判断数列{bn}是否是等差数列,并说明理由;
(2)若$\lim_{n→∞}(\frac{s}{a_n}+\frac{t}{b_n})=1$(s,t∈R),求st的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a、b为正数,$\frac{1}{a}$+$\frac{1}{b}$≤2$\sqrt{2}$,(a-b)2=4(ab)3,则a+b=(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在长方体ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,O为D1C与DC1的交点,则三棱锥O-ABC的体积为(  )
A.5B.10C.15D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+x2-2ax+1,g(x)=ex+x2-2ax+1,(a为常数).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:|f(x)-g(x)|>2.

查看答案和解析>>

同步练习册答案