精英家教网 > 高中数学 > 题目详情
14.在△ABC中,AB=5,BC=2,∠B=60°,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值为(  )
A.5$\sqrt{3}$B.5C.-5$\sqrt{3}$D.20

分析 由题意画出图形,把$\overrightarrow{AB}$•$\overrightarrow{AC}$转化为含有$\overrightarrow{BA}、\overrightarrow{BC}$的式子化简求值.

解答 解:如图,

∵AB=5,BC=2,∠B=60°,
∴$\overrightarrow{AB}•\overrightarrow{AC}$=$\overrightarrow{AB}•(\overrightarrow{BC}-\overrightarrow{BA})$=$\overrightarrow{AB}•\overrightarrow{BC}+{\overrightarrow{BA}}^{2}=5×2×cos120°+25$=-5+25=20.
故选:D.

点评 本题考查平面向量的数量积运算,考查向量减法的三角形法则,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在平面四边形ABCD中,AB⊥AD,BD⊥CD,且AB=AD=DC=2,点M是BD的中点,现将平面四边形ABCD沿对角线BD折起成四面体PBCD.
(1)当平面PBD⊥平面CBD时,求证:BP⊥平面PCD;
(2)在(1)的条件下,求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,PA=AD,F为PD的中点.
(1)求证:AF⊥平面PDC;
(2)求直线AC与平面PCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我省某校要进行一次月考,一般考生必须考5 门学科,其中语、数、英、综合这四科是必考科目,另外一门在物理、化学、政治、历史、生物、地理、英语Ⅱ中选择.为节省时间,决定每天上午考两门,下午考一门学科,三天半考完.
(1)若语、数、英、综合四门学科安排在上午第一场考试,则“考试日程安排表”有多少种不同的安排方法;
(2)如果各科考试顺序不受限制,求数学、化学在同一天考的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,点M是侧棱SC的中点.
(Ⅰ)求异面直线BM与CD所成角的大小;
(Ⅱ)求二面角S-AM-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.曲线C1的极坐标方程和曲线C2的参数方程分别为ρ=4sinθ,$\left\{\begin{array}{l}{x=-1-2t}\\{y=5+2t}\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程与曲线C2的普通方程,并指出是什么曲线;
(2)求曲线C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,则f(1)+f(2)+f(3)+…+f(2013)=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,己知平行四边形ABCD中,∠BAD=60°,AB=6,AD=3,G为CD中点,现将梯形ABCG沿着AG折起到AFEG.
(I)求证:直线CE∥平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值.
(Ⅲ)若直线AF与平面 ABCD所成角为$\frac{π}{6}$,求证:FG⊥平面ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,M是BC的中点,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

同步练习册答案