精英家教网 > 高中数学 > 题目详情
5.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,PA=AD,F为PD的中点.
(1)求证:AF⊥平面PDC;
(2)求直线AC与平面PCD所成角的大小.

分析 (1)由已知先证明CD⊥平面PAD,可得:CD⊥AF,结合AF⊥PD,可得AF⊥平面PDC;
(2)连接CF,由(1)可知CF是AF在平面PCD内的射影,故∠ACF是AF与平面PCD所成的角,解得答案.

解答 解:(1)∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵正方形ABCD中,CD⊥AD,PA∩AD=A,
∴CD⊥平面PAD,
∴CD⊥AF,
∵PA=AD,FP=FD
∴AF⊥PD
又∵CD∩PD=D
∴AF⊥平面PDC…(6分)
(2)连接CF

由(1)可知CF是AF在平面PCD内的射影
∴∠ACF是AF与平面PCD所成的角
∵AF⊥平面PDC∴AF⊥FC
在△ACF中,$AC=2\sqrt{2},CF=\sqrt{C{D^2}+D{F^2}}=\sqrt{6}$
∴$cos∠ACF=\frac{CF}{AC}=\frac{{\sqrt{3}}}{2}∴∠ACF={30°}$
AF与平面PCD所成的角为30°.…..(12分)

点评 本题考查的知识点是直线与平面所成的角,线面垂直的判定与性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若实数x、y满足x2+2xy+y2+4x2y2=4,则x-y的最大值是$\frac{\sqrt{17}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
已知y关于x的回归方程y=bx+1.05,则b=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.
(1)求证:EF∥平面PAD;
(2)求EF与平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.甲、乙两人玩儿掷骰子游戏,游戏规则规定:若抛掷处的点数不少于3点,则抛掷者得1分,对方得0分,若抛掷出的点数少于3点,则抛掷者得0分,对方得1分,各次抛掷互相独立,并规定第一次由甲抛掷,第二次由乙抛掷,第三次再由甲抛掷,依次轮换抛掷.
(Ⅰ)求前3次抛掷甲得2分且乙得1分的概率;
(Ⅱ)ξ表示前3此抛掷乙的得分,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间(0,1)随机地取出一个数,则这个数小于$\frac{1}{3}$的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E是线段AB上的点,且EB=1,则二面角C-DE-C1的正切值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AB=5,BC=2,∠B=60°,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值为(  )
A.5$\sqrt{3}$B.5C.-5$\sqrt{3}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在长方体ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,O为D1C与DC1的交点,则三棱锥O-ABC的体积为(  )
A.5B.10C.15D.30

查看答案和解析>>

同步练习册答案