精英家教网 > 高中数学 > 题目详情
16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
已知y关于x的回归方程y=bx+1.05,则b=0.7.

分析 根据回归直线方程过样本中心点,即可求出方程系数b的值.

解答 解:∵$\overline{x}$=$\frac{1}{4}$×(2+3+4+5)=3.5,
$\overline{y}$=$\frac{1}{4}$×(2.5+3+4+4.5)=3.5,
回归直线方程y=bx+1.05过样本中心点,
∴3.5b+1.05=3.5,
解得b=0.7.
故答案为:0.7.

点评 本题主要考查了回归方程过样本中心以及平均数的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆的左、右焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),且过点(1,-$\frac{\sqrt{3}}{2}$).
(1)、求椭圆的方程;
(2)、过椭圆的右焦点作斜率为$\sqrt{3}$直线l交椭圆于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数y=f(x)的定义域为R,f(x)在x=m时取得最值,又知y=g(x)为一次函数,且f(x)+g(x)=x2+x-2.
(1)求f(x)的解析式,用m表示;
(2)当x∈[-2,1]时,f(x)≥-3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面四边形ABCD中,AB⊥AD,BD⊥CD,且AB=AD=DC=2,点M是BD的中点,现将平面四边形ABCD沿对角线BD折起成四面体PBCD.
(1)当平面PBD⊥平面CBD时,求证:BP⊥平面PCD;
(2)在(1)的条件下,求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知如图,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,AP⊥平面ABCD,DC=2AB=2AD=2AP,点E、F、G分别是PB、PC、PD的中点.
(Ⅰ)求证:AC∥平面EFG;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某一随机变量ξ的概率分布如下,且E(ξ)=6.3,则a的值为7.
ξ4a9
P0.50.1b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图:四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=$\frac{π}{3}$,M是BC上的点,且BM=$\frac{1}{2}$,
(1)证明:BC⊥平面POM;
(2)若边PC与底面ABCD所成角的正切值为1,求平面PAD与平面PBC所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,PA=AD,F为PD的中点.
(1)求证:AF⊥平面PDC;
(2)求直线AC与平面PCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,则f(1)+f(2)+f(3)+…+f(2013)=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案