精英家教网 > 高中数学 > 题目详情
7.已知数列{an}满足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,n∈N*
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.

分析 (1)由数列{an}满足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,n∈N*.分别令n=1,2,3,即可得出.
(2)数列{an}满足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,n∈N*.两边取倒数可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,再利用等差数列的通项公式即可得出.

解答 解:(1)∵数列{an}满足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,n∈N*.∴a2=$\frac{2{a}_{1}}{{a}_{1}+2}$=$\frac{2}{3}$,同理可得:a3=$\frac{1}{2}$,a4=$\frac{2}{5}$.
(2)数列{an}满足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,n∈N*
两边取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为1,公差为$\frac{1}{2}$,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1),解得an=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$.

点评 本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列是有关三角形ABC的几个命题,
①若tanA+tanB+tanC>0,则△ABC是锐角三角形;
②若sin2A=sin2B,则△ABC是等腰三角形;
③若($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BC}$=0,则△ABC是等腰三角形;
④若cosA=sinB,则△ABC是直角三角形; 
其中正确命题的个数是(  )
A..1B..2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是一个四面体的三视图,则该四面体外接球的体积与四面体的体积的比值为(  )
A.2$\sqrt{2}$πB.3$\sqrt{3}$πC.D.2$\sqrt{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.用力F推动一物体运动S米,设F与水平面的夹角为θ,则它所做的功是FScosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示:

若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[136,151]上的运动员人数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设直线l:x+2y-2=0,交椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1于A、B两点,在椭圆C上找一点P,使△ABP面积最大,求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC的外心为O,且2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则cos∠BAC的值是$±\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C的圆心在射线y=x一4(y≥0)上,在x轴上截得的弦长为4,且过点(2,0).求圆C的标准方程.

查看答案和解析>>

同步练习册答案