精英家教网 > 高中数学 > 题目详情
12.设直线l:x+2y-2=0,交椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1于A、B两点,在椭圆C上找一点P,使△ABP面积最大,求△ABP面积的最大值.

分析 设P(3cosθ,2sinθ),由点到直线的距离公式和三角函数性质求出点P到直线l的距离的最大值dmax,联立$\left\{\begin{array}{l}{x+2y-2=0}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得25y2-32y-20=0,由弦长公式求出|AB|,由此能求出△ABP面积的最大值.

解答 解:∵直线l:x+2y-2=0,交椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1于A、B两点,在椭圆C上找一点P,使△ABP面积最大,
∴设P(3cosθ,2sinθ),
点P到直线l的距离:d=$\frac{|3cosθ+4sinθ-2|}{\sqrt{5}}$=$\frac{|5sin(θ+α)-2|}{\sqrt{5}}$,
∴dmax=$\frac{|-5-2|}{\sqrt{5}}$=$\frac{7\sqrt{5}}{5}$,
联立$\left\{\begin{array}{l}{x+2y-2=0}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得25y2-32y-20=0,
△=(-32)2-4×25×(-20)=3024>0
设A(x1,y1),B(x2,y2),则${y}_{1}+{y}_{2}=\frac{32}{25}$,y1y2=-$\frac{20}{25}$=-$\frac{4}{5}$,
∴|AB|=$\sqrt{[1+\frac{1}{(-\frac{1}{2})^{2}}]}[(\frac{32}{25})^{2}-4×(-\frac{4}{5})]$=$\frac{12\sqrt{105}}{25}$,
∴△ABP面积的最大值Smax=|AB|•dmax=$\frac{1}{2}$×$\frac{12\sqrt{105}}{25}×\frac{7\sqrt{5}}{5}$=$\frac{42\sqrt{21}}{25}$.

点评 本题考查三角形面积的最大值的求法,是中档题,解题时要认真审题,注意椭圆参数方程、弦长公式、三角函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设Sn是等比数列{an}的前n项和,若S2=2,S6=4,则S4=(  )
A.1+$\sqrt{5}$B.$\frac{10}{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设角α的终边过点P(-4t,3t)(t∈R,且t>0),则2sinα+cosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下列命题:
①曲线的切线一定和曲线只有一个交点;
②“可导函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取得极值”的必要不充分条件;
③若f(x)在(a,b)内存在导数,则“f′(x)<0”是f(x)在(a,b)内单调递减的充要条件;
④求曲边梯形的面积用到了“以直代曲”的思想,在“近似代替”中,函数f(x)在区间[xi,xi+1]上的近似值可以是该区间内任一点的函数值f(ξi)(ξi∈[xi,xi+1])
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,a1=1,n∈N*
(1)求a2,a3,a4的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x|x+1|,x∈[-2,2].
(1)画出函数y=f(x)的图象;
(2)求f(x)的值域;
(3)试根据图象关系,解不等式f(x)≥-$\frac{1}{2}$(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)的定义域为R,且f′(x)+f(x)=2xe-x,若f(0)=1,则函数$\frac{f′(x)}{f(x)}$的取值范围为(  )
A.[-2,0]B.[-1,0]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点M(x0,y0)为椭圆C上一点,点F1、A1,A2分别是椭圆C的左焦点、左顶点,右顶点.满足过M与左、右两顶点A1,A2的连线斜率的积为-$\frac{1}{2}$且|F1A1|=$\sqrt{2}$-1,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的单调区间.
(1)y=-x2+2|x|+3;
(2)y=log2(x2-1)

查看答案和解析>>

同步练习册答案