【题目】如图,在四棱锥
中,底面
为正方形,侧棱
底面
,
为棱
上一点,![]()
![]()
(1)当
为棱
中点时,求直线
与平面
所成角的正弦值;
(2)是否存在
点,使二面角
的余弦值为
?若存在,求
的值.若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】设
是等差数列,
,且
,
,
成等比数列.
(1)求
的通项公式;
(2)求
的前
项和
的最小值;
(3)若
是等差数列,
与
的公差不相等,且
,问:
和
中除第5项外,还有序号相同且数值相等的项吗?(直接写出结论即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆Γ:
+
=1(a>b>0)的长轴长为4,离心率为
.
(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
![]()
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在
(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在
(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在
(元)的居民,剩余的数字表示月收入不在
(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989
据此估计,计算该社区3个居民中恰好有2个月收入在
(元)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,点
,点
是平面直角坐标系内的动点,且点
到直线
的距离是点
到点
的距离的2倍.记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线
与曲线
交于
、
两点,若
(
是坐标系原点)的面积为
,求直线
的方程;
(3)若(2)中过点
的直线
是倾斜角不为0的任意直线,仍记
与曲线
的交点为
、
,设点
为线段
的中点,直线
与直线
交于点
,求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知
是递增数列,其前
项和为
,
,且
,
.
(Ⅰ)求数列
的通项
;
(Ⅱ)是否存在
使得
成立?若存在,写出一组符合条件的
的值;若不存在,请说明理由;
(Ⅲ)设
,若对于任意的
,不等式
恒成立,求正整数
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com