分析 直接根据同角三角函数之间的关系对函数进行化简,再结合正弦函数单调性及周期的求法即可得到结论.
解答 解:因为:y=sin4x+cos4x
=(sin2x+cos2x)2-2sin2x•cos2x
=1-$\frac{1}{2}$sin22x=1-$\frac{1}{2}$•$\frac{1-cos4x}{2}$
=1-$\frac{1-cos4x}{4}$
=$\frac{3}{4}$+$\frac{cos4x}{4}$.
所以:所求最小正周期T=$\frac{2π}{4}$=$\frac{π}{2}$,
由cos4x∈[-1,1],可得y=sin4x+cos4x=$\frac{3}{4}$+$\frac{cos4x}{4}$∈[$\frac{1}{2}$,1].
点评 本题主要考查三角函数中的恒等变换以及三角函数的周期的求法.函数y=Asin(ωx+φ)+b的周期公式为 T=2$\frac{2π}{|ω|}$,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$ | B. | $f(1)>2f(\frac{π}{6})sin1$ | C. | $\sqrt{2}f({\frac{π}{6}})<f({\frac{π}{4}})$ | D. | $\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {5} | C. | {1,3} | D. | {4,5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com