精英家教网 > 高中数学 > 题目详情
2.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x)是它的导函数,且恒有f(x)>f′(x)tanx成立,则(  )
A.$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$B.$f(1)>2f(\frac{π}{6})sin1$C.$\sqrt{2}f({\frac{π}{6}})<f({\frac{π}{4}})$D.$\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$

分析 把给出的等式变形得到f′(x)sinx-f(x)cosx>0,由此联想构造辅助函数g(x)=$\frac{f(x)}{sinx}$,由其导函数的符号得到其在(0,$\frac{π}{2}$)上为增函数,即可判断.

解答 解:∵x∈(0,$\frac{π}{2}$),∴sinx>0,cosx>0,
由f(x)>f′(x)tanx,得f(x)cosx>f′(x)sinx.
即f′(x)sinx-f(x)cosx<0
构造函数g(x)=$\frac{f(x)}{sinx}$,
则g′(x)=$\frac{f′(x)sinx-f(x)cosx}{si{n}^{2}x}$<0,
∴函数g(x)在x∈(0,$\frac{π}{2}$),上单调递减,
∴$\frac{f(\frac{π}{4})}{sin\frac{π}{4}}>\frac{f(\frac{π}{3})}{sin\frac{π}{3}}$,
∴$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$,
故选:A.

点评 本题考查函数的单调性和导数的关系,构造函数是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且2b=asinC.
(1)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)若tanA=3,求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若不等式3sin2x-cos2x+4cosx+a≥-4对一切x都成立,则实数a的取值范围为(  )
A.(1,+∞)B.(-1,+∞)C.[1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=sin4x+cos4x,求此函数的值域和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的一个内角∠B=60°,且a+c=5,ac=6.求:
(1)边b的长;
(2)△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项公式为${a_n}={(-1)^n}(2n-1)$,则a1+a2+…+a30=30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足${a_n}={x^n}-2n$,则数列{an}的前n项和Sn=$\left\{\begin{array}{l}{-{n}^{2}-n,x=0}\\{-{n}^{2},x=1}\\{\frac{{x}^{n+1}-x}{x-1}-{n}^{2}-n,x≠0,1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.${(2x-\frac{1}{x})^8}$的展开式中x2的系数为(  )
A.-1792B.1792C.-448D.448

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\int_{-2}^2{sinxdx=}$(  )
A.-1B.1C.0D.-8

查看答案和解析>>

同步练习册答案