精英家教网 > 高中数学 > 题目详情
抛掷一枚质地不均匀的骰子,出现向上点数为1,2,3,4,5,6的概率依次记为p1,p2,p3,p4,p5,p6,经统计发现,数列{pn}恰好构成等差数列,且p4是p1的3倍.
(Ⅰ)求数列{pn}的通项公式.
(Ⅱ)甲、乙两人用这枚骰子玩游戏,并规定:掷一次骰子后,若向上点数为奇数,则甲获胜,否则已获胜,请问这样的规则对甲、乙二人是否公平?请说明理由;
(Ⅲ)甲、乙、丙三人用这枚骰子玩游戏,根据掷一次后向上的点数决定胜出者,并制定了公平的游戏方案,试在下面的表格中列举出两种可能的方案(不必证明).
方案序号 甲胜出对应点数 乙胜出对应点数 丙胜出对应点数
 ①      
 ②      
考点:互斥事件的概率加法公式,古典概型及其概率计算公式
专题:概率与统计
分析:(Ⅰ)设数列{pn}的公差为d,由p4是p1的3倍及概率的性质,得到方程,解方程,继而求得通项公式.
(Ⅱ)分别求出甲乙的概率,然后比较即可.
(Ⅲ)根据投掷的点数写出所有的可能即可.
解答: 解:(Ⅰ)设数列{pn}的公差为d,由p4是p1的3倍及概率的性质,有
P1+3d=3P1
6P1+
6×5
2
d=1

解得P1=
1
16
,d=
1
24

Pn=
2n+1
48
,1≤n≤6,n∈N*
(Ⅱ)不公平,
甲获胜的概率P=p1+p2+p3=
3+7+11
48
=
7
16

甲获胜的概率PP=p4+p5+p6=
5+9+13
48
=
9
16

二者概率不同,所以不公平.
(Ⅲ)(共6种可能,答出任意2种即可)
  甲获胜对应点数 乙获胜对应点数 丙获胜对应点数
 ① 1,6 2,5 3,4
 ② 1,6 3,4 2,5
 ③ 2,5 3,4 1,6
 ④ 2,5 1,6 3,4
 ⑤ 3,4 1,6 2,5
 ⑥ 3,4 2,5 1,6
点评:本题主要考查了等差数列的通项公式,概率的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tan2α=
3
4
,α∈(0,
π
4
),则
sinα+cosα
sinα-cosα
=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinωx+
3
cosωx(ω>0)的两条相邻的对称轴间的距离为
π
2
,且f(x)图象关于点(x0,0)成中心对称,则x0可能为(  )
A、
π
12
B、
π
6
C、
π
3
D、
5
12
π

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的表面积为(  )
A、20πB、16π
C、12πD、10π

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),A(2,0)是长轴的一个端点,弦BC过椭圆的中心O,且
AC
BC
=0,|
OC
-
OB
|=2|
BC
-
BA
|.
(1)求椭圆的方程;
(2)对于椭圆上的两点P、Q,∠PCQ的平分线总是垂直于x轴时,是否存在实数λ,使得
PQ
AB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),A,F分别为椭圆C的左顶点和右焦点,过F的直线l交椭圆C于点P,Q.若AF=3,且当直线l⊥x轴时,PQ=3.
(1)求椭圆C的方程;
(2)设直线AP,AQ的斜率分别为k1,k2,问k1k2是否为定值?并证明你的结论;
(3)记△APQ的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A,B,C的对边分别为a,b,c,向量
m
=(cosA,sinA),
n
=(
2
-sinA,cosA),若
m
n
=1.
(1)求角A的大小;
(2)若b=4
2
,且c=
2
a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB,CD为圆O的两条直径,P为圆O所在平面外的一点,且PA=PB=PC
(Ⅰ)求证:平面PAB⊥圆O所在平面;
(Ⅱ)若AP⊥BP,∠BAC=
π
6
,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cosA=
1
3
,则sin(A+
π
4
)=
 

查看答案和解析>>

同步练习册答案