精英家教网 > 高中数学 > 题目详情
在△ABC中,设角A,B,C的对边分别为a,b,c,向量
m
=(cosA,sinA),
n
=(
2
-sinA,cosA),若
m
n
=1.
(1)求角A的大小;
(2)若b=4
2
,且c=
2
a,求△ABC的面积.
考点:余弦定理,平面向量数量积的运算,正弦定理
专题:三角函数的求值
分析:(1)由两向量的坐标利用平面向量数量积运算化简已知等式,整理后求出cosA的值,即可确定出A的度数;
(2)利用余弦定理列出关系式,将cosA,b,c=
2
a代入求出a的值,进而求出c的值,利用三角形面积公式即可求出三角形ABC面积.
解答: 解:(1)∵
m
=(cosA,sinA),
n
=(
2
-sinA,cosA),且
m
n
=1,
2
cosA-sinAcosA+sinAcosA=1,
∴cosA=
2
2

则A=
π
4

(2)∵cosA=
2
2
,b=4
2
,c=
2
a,
∴由余弦定理得:a2=b2+c2-2bccosA=32+2a2-8
2
a,
解得:a=4
2
,c=
2
a=8,
则S△ABC=
1
2
bcsinA=
1
2
×4
2
×8×
2
2
=16.
点评:此题考查了余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
与向量
b
的夹角为90°,且|
a
|=1,|
b
|=2,若
c
=
a
+λ
b
c
⊥(2
a
-
b
),则实数λ的值为(  )
A、λ=
1
4
B、λ=
1
3
C、λ=
1
2
D、λ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司有普通职员150人、中级管理人员40人、高级管理人员10人,现采用分层抽样的方法从这200人中抽取40人进行问卷调查,若在已抽取的40人的问卷中随机抽取一张,则所抽取的恰好是一名高级管理人员的答卷的概率=(  )
A、
1
4
B、
1
5
C、
1
20
D、
1
100

查看答案和解析>>

科目:高中数学 来源: 题型:

抛掷一枚质地不均匀的骰子,出现向上点数为1,2,3,4,5,6的概率依次记为p1,p2,p3,p4,p5,p6,经统计发现,数列{pn}恰好构成等差数列,且p4是p1的3倍.
(Ⅰ)求数列{pn}的通项公式.
(Ⅱ)甲、乙两人用这枚骰子玩游戏,并规定:掷一次骰子后,若向上点数为奇数,则甲获胜,否则已获胜,请问这样的规则对甲、乙二人是否公平?请说明理由;
(Ⅲ)甲、乙、丙三人用这枚骰子玩游戏,根据掷一次后向上的点数决定胜出者,并制定了公平的游戏方案,试在下面的表格中列举出两种可能的方案(不必证明).
方案序号 甲胜出对应点数 乙胜出对应点数 丙胜出对应点数
 ①      
 ②      

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an-2an+1+an+2=0(n∈N*),且a1,a2,a5成公比不等于1的等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
a2n-1+1
,数列{bn}的前n项和为Sn,求满足Sn
510
511
的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2
3
,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对边分别为a,b,c,且
sinA
a
=
3
cosB
b

(1)求角B的大小;
(2)如果b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为:
x=-2+tcosα
y=tsinα
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ.
(Ⅰ)求曲线C的普通方程;
(Ⅱ)当α=
π
4
时,求直线l被曲线C截得的弦长.

查看答案和解析>>

同步练习册答案