精英家教网 > 高中数学 > 题目详情
4.如图,平面ABC⊥平面α,且平面ABC∩平面α=BC,AB=1,BC=$\sqrt{3}$,∠ABC=$\frac{5π}{6}$,平面α内一动点P满足∠PAB=$\frac{π}{6}$,则PC的最小值是$\frac{\sqrt{5}}{2}$.

分析 如图所示,建立空间直角坐标系,设P(x,y,0),可得$\overrightarrow{AP}•\overrightarrow{AB}$,可得$|\overrightarrow{PC}|$=$\sqrt{{x}^{2}+(y-\frac{\sqrt{3}}{2})^{2}+0}$.

解答 解:如图所示,建立空间直角坐标系,
A$(0,0,\frac{1}{2})$,B$(0,\frac{\sqrt{3}}{2},0)$,C$(0,\frac{3\sqrt{3}}{2},0)$,设P(x,y,0),则$\overrightarrow{AP}$=$(x,y,-\frac{1}{2})$,$\overrightarrow{AB}$=$(0,\frac{\sqrt{3}}{2},-\frac{1}{2})$,
$\overrightarrow{AP}•\overrightarrow{AB}$=$\sqrt{{x}^{2}+{y}^{2}+(-\frac{1}{2})^{2}}$$•\sqrt{0+(\frac{\sqrt{3}}{2})^{2}+(-\frac{1}{2})^{2}}$$•cos\frac{π}{6}$,
∴$\frac{\sqrt{3}}{2}$y+$\frac{1}{4}$=$\sqrt{{x}^{2}+{y}^{2}+(-\frac{1}{2})^{2}}$$•cos\frac{π}{6}$,
∴$\frac{3}{4}{y}^{2}+\frac{\sqrt{3}}{4}$y+$\frac{1}{16}$=$\frac{3}{4}$$({x}^{2}+{y}^{2}+\frac{1}{4})$,
∴${x}^{2}=\frac{\sqrt{3}}{3}$y-$\frac{1}{6}$.
$|\overrightarrow{PC}|$=$\sqrt{{x}^{2}+(y-\frac{\sqrt{3}}{2})^{2}+0}$=$\sqrt{(y-\frac{\sqrt{3}}{3})^{2}+\frac{5}{4}}$≥$\frac{\sqrt{5}}{2}$,
∴PC的最小值是$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.

点评 本题考查了空间位置关系、空间向量的应用、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.集合A={-1,0,1,2,3},B={x|log2(x+1)<2},则A∩B等于(  )
A.{-1,0,1,2}B.{0,1,2}C.{-1,0,1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:选择题

函数的图像大致是( )

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知,则等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知复数满足为虚数单位),则在复平面内对应的点位于( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,已知点A(2,t),点B(4,0),若圆O:x2+y2=9上存在点P,使得PA=PB,则实数t的最大值是2$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图22中△A1BE的位置,得到四棱锥A1-BCDE.
(文、理科)证明:CD⊥平面A1OC;
(理科) 若平面A1BE⊥平面BCDE,求二面角D-A1C-B的余弦值.
(文科) 若平面A1BE⊥平面BCDE,求二面角A1-DC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:BE⊥平面PAC.
(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1558石,验得米内夹谷,抽样取米一把,数得381粒内夹谷42粒,则这批米内夹谷约为(  )
A.146石B.172石C.341石D.1358石

查看答案和解析>>

同步练习册答案