分析 设单位法向量$\overrightarrow{n_0}$=(a,b),可得3b-4a=0,又$\sqrt{{a}^{2}+{b}^{2}}$=1,联立解出即可得出.
解答 解:设单位法向量$\overrightarrow{n_0}$=(a,b),则3b-4a=0,
又$\sqrt{{a}^{2}+{b}^{2}}$=1,
联立解得$\left\{\begin{array}{l}{a=\frac{3}{5}}\\{b=\frac{4}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{a=-\frac{3}{5}}\\{b=-\frac{4}{5}}\end{array}\right.$,
∴单位法向量$\overrightarrow{n_0}$=$±(\frac{3}{5},\frac{4}{5})$.
故答案为:$±(\frac{3}{5},\frac{4}{5})$.
点评 本题考查了向量垂直于数量积的关系、单位向量,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>2} | B. | {x|x>3或x<2} | C. | {x|2≤x≤3} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-2y+1=0 | B. | 2x-y-1=0 | C. | x-y+3=0 | D. | x-y-3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平面D1A1P⊥平面A1AP | B. | 二面角B-A1D1-A的大小为45° | ||
| C. | 三棱锥B1-D1PC的体积不变 | D. | AP+PD1的最小值为$\sqrt{2+\sqrt{3}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com