精英家教网 > 高中数学 > 题目详情
4.设数列{an}中,a1=3,an+1=an+n+1,则通项an=(  )
A.$\frac{{{n^2}+n+1}}{2}$B.$\frac{{{n^2}+n+2}}{2}$C.$\frac{{{n^2}+n+3}}{2}$D.$\frac{{{n^2}+n+4}}{2}$

分析 当n≥2时,利用an-a1=(an-an-1)+(an-1-an-2)+…+(a2-a1)计算可知an=$\frac{{n}^{2}+n+4}{2}$(n≥2),进而验证当n=1时是否成立即可.

解答 解:∵a1=3,an+1=an+n+1,
∴an+1-an=n+1,
∴当n≥2时,an-a1=(an-an-1)+(an-1-an-2)+…+(a2-a1
=n+(n-1)+…+2
=$\frac{(n-1)(n+2)}{2}$,
∴an=$\frac{{n}^{2}+n-2}{2}$+3=$\frac{{n}^{2}+n+4}{2}$(n≥2),
又∵a1=3满足上式,
∴an=$\frac{{n}^{2}+n+4}{2}$,
故选:D.

点评 本题考查数列的通项,考查并项相加法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,曲线C的参数方程为:$\left\{{\begin{array}{l}{x=1+\sqrt{3}cosφ}\\{y=\sqrt{3}sinφ}\end{array}}$(φ是参数方程,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线l1的极坐标方程是2ρsin(θ+$\frac{π}{3}$)+3$\sqrt{3}$=0,直线l2:θ=$\frac{π}{3}$(ρ∈R)与曲线C的交点为P,与直线l1的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是一个几何体的三视图,则该几何体的体积是15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列不等式的证明过程:
①若a,b∈R,则$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2;
②若x,y∈R,则|x+$\frac{4}{y}$|=|x|+$\frac{4}{|y|}$≥2$\sqrt{|x|•\frac{4}{|y|}}$;
③若a,b∈R,ab<0,则$\frac{b}{a}$+$\frac{a}{b}$=-[(-$\frac{b}{a}$)+(-$\frac{a}{b}$)]≤-2$\sqrt{(-\frac{b}{a})•(-\frac{a}{b})}$=-2.
其中正确的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.四棱锥P-ABCD底面是菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)求证:平面AEF⊥平面PAD;
(Ⅱ)若$\frac{PA}{AB}$=$\sqrt{3}$,设H为PD的四等分点(靠近点D),求EH与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}是等差数列,a1=1,an=-512,Sn=-1022,求公差d及n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.记实数a,b中的最大数为max{a,b},定义数列{an}:an=max{n2,2n},则数列{an}的前10项和为(  )
A.2046B.2047C.2048D.2049

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=cosxB.y=e-xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974
高三(1)班有48名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.32B.24C.16D.8

查看答案和解析>>

同步练习册答案