精英家教网 > 高中数学 > 题目详情
16.记实数a,b中的最大数为max{a,b},定义数列{an}:an=max{n2,2n},则数列{an}的前10项和为(  )
A.2046B.2047C.2048D.2049

分析 由题意,a1=1,a2=4,a3=9,a4=16,n≥5,an=2n,利用等比数列的求和公式求出数列{an}的前10项和.

解答 解:由题意,a1=1,a2=4,a3=9,a4=16,n≥5,an=2n
∴数列{an}的前10项和为1+4+9+16+25+…+210=30+$\frac{32(1-{2}^{6})}{1-2}$=2046.
故选:A.

点评 本题考查新定义,考查等比数列的求和公式,训练了数列前n项和的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{4}{3}$B.1C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面BCC1B1都是菱形,∠ACC1=∠BCC1=120°,AC=2.
(Ⅰ)求证:CC1⊥A1B1;(Ⅱ)若A1B1=$\sqrt{6}$,求直线B1C1与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设数列{an}中,a1=3,an+1=an+n+1,则通项an=(  )
A.$\frac{{{n^2}+n+1}}{2}$B.$\frac{{{n^2}+n+2}}{2}$C.$\frac{{{n^2}+n+3}}{2}$D.$\frac{{{n^2}+n+4}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知ABCD为矩形,AB=3,BC=2,在矩形ABCD内随机取一点P,点P到矩形四个顶点的距离都大于1的概率为1-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=2x3+3x2-12x的极小值是-7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出以下四个结论:
(1)函数f(x)=$\frac{x-1}{2x+1}$的对称中心是(-$\frac{1}{2}$,-$\frac{1}{2}$);
(2)若关于x的方程x-$\frac{1}{x}$+k=0在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则 3b-2a>1;
(4)若将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向右平移φ(φ>0)个单位后变为偶函数,则φ的最小值是$\frac{π}{12}$,
其中正确的结论是:(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b为实数.
(Ⅰ)若a>0,b>0,求证:(a+b+$\frac{1}{a}$)(a2+$\frac{1}{b}$+$\frac{1}{{a}^{2}}$)≥9;
(Ⅱ)若|a|<1,|b|<1,求证:|1-ab|>|a-b|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)关于直线x=-2对称,且周期为2,当x∈[-3,-2]时,f(x)=(x+2)2,则f($\frac{5}{2}$)=(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{16}$D.1

查看答案和解析>>

同步练习册答案