精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)关于直线x=-2对称,且周期为2,当x∈[-3,-2]时,f(x)=(x+2)2,则f($\frac{5}{2}$)=(  )
A.0B.$\frac{1}{4}$C.$\frac{1}{16}$D.1

分析 根据函数的周期性及对称性求出函数的值即可.

解答 解:∵函数f(x)关于直线x=-2对称,且周期为2,当x∈[-3,-2]时,f(x)=(x+2)2
∴$f(\frac{5}{2})=f(\frac{1}{2})=f(-\frac{3}{2})=f(-\frac{5}{2})={(-\frac{5}{2}+2)^2}=\frac{1}{4}$,
故选:B.

点评 本题考查了函数的周期性,考查函数求值问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.记实数a,b中的最大数为max{a,b},定义数列{an}:an=max{n2,2n},则数列{an}的前10项和为(  )
A.2046B.2047C.2048D.2049

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,若$\overrightarrow{c}$=t$\overrightarrow{a}$+(1-t)$\overrightarrow{b}$,则实数t的值为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974
高三(1)班有48名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.32B.24C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆C1:$\frac{x^2}{m+1}$+$\frac{y^2}{3-n}$=1与双曲线C2:$\frac{x^2}{m}$-$\frac{y^2}{-n}$=1有相同的焦点,则双曲线C2的一条斜率为正的渐近线的倾斜角的取值范围为(  )
A.(45°,90°)B.(45°,90°]C.(0,45°)D.(45°,60°)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,已知椭圆C:$\frac{x^2}{4}$+y2=1的左、右焦点分别为F1,F2,点M与C的焦点不重合,分别延长MF1,MF2到P,Q,使得$\overrightarrow{M{F_1}}$=$\frac{2}{3}$$\overrightarrow{{F_1}P}$,$\overrightarrow{M{F_2}}$=$\frac{2}{3}$$\overrightarrow{{F_2}Q}$,D是椭圆C上一点,延长MD到N,若$\overrightarrow{QD}$=$\frac{3}{5}$$\overrightarrow{QM}$+$\frac{2}{5}$$\overrightarrow{QN}$,则|PN|+|QN|=(  )
A.10B.5C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1、F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=30°时,这一对相关曲线中椭圆的离心率是(  )
A.7-4$\sqrt{3}$B.2-$\sqrt{3}$C.$\sqrt{3}$-1D.4-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),过点(0,4)作直线l交抛物线于A,B两点,且以AB为直径的圆过原点O.
(Ⅰ)求抛物线方程;
(Ⅱ)若△MNP的三个顶点都在抛物线x2=2py上,且以抛物线的焦点为重心,求△MNP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,已知Sn是其前n项和,且a1-a4-a8-a12+a15=2,则S15=(  )
A.-30B.30C.-15D.15

查看答案和解析>>

同步练习册答案