| A. | 7-4$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | $\sqrt{3}$-1 | D. | 4-2$\sqrt{3}$ |
分析 由题意可知:设焦点在x轴上,椭圆和双曲线方程,$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),$\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$,且c=c1,a2-b2=${a}_{1}^{2}+{b}_{1}^{2}$=c2,$\frac{c}{a}•\frac{c}{a_1}=1(*)$,根据余弦定理,求得$b_1^2=(7-4\sqrt{3}){b^2}$,由离心率公式即可求得e的值.
解答 解:由题意设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,(a>b>0)
双曲线方程为$\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$,且c=c1.
由题意$\frac{c}{a}•\frac{c}{a_1}=1(*)$,
由∠F1PF2=30°,由余弦定理得:椭圆中$4{c^2}=4{a^2}-(2+\sqrt{3})|{P{F_1}}||{P{F_2}}|$,
双曲线中:$4{c^2}=4a_1^2+(2-\sqrt{3})|{P{F_1}}||{P{F_2}}|$,
可得$b_1^2=(7-4\sqrt{3}){b^2}$,代入(*),
${c^4}=a_1^2{a^2}=({c^2}-b_1^2){a^2}=(8-4\sqrt{3}){c^2}{a^2}-(7-4\sqrt{3}){a^4}$,
即${e^4}-(8-4\sqrt{3}){e^2}+(7-4\sqrt{3})=0$,
得${e^2}=7-4\sqrt{3}$,即$e=2-\sqrt{3}$,
故答案选:B.
点评 本题考查椭圆和双曲线的定义、方程和性质,注意运用定义法和离心率公式是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{4}$ | C. | $\frac{1}{16}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6826 | B. | 3174 | C. | 228 | D. | 456 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{2}$ | B. | $4\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com