1£®ÒÑÖªÍÖÔ²§¤£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã·Ö±ðΪF1¡¢F2£¬PÊÇÍÖÔ²ÉÏλÓÚµÚÒ»ÏóÏÞÄڵĵ㣬PQ¡ÍxÖᣬ´¹×ãΪQ£¬ÇÒ|F1F2|=6£¬¡ÏPF1F2=arccos$\frac{5\sqrt{3}}{9}$£¬¡÷PF1F2µÄÃæ»ýΪ3$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²§¤µÄ·½³Ì£»
£¨2£©ÈôMÊÇÍÖÔ²Éϵ͝µã£¬Çó|MQ|µÄ×î´óÖµ£®²¢Çó³ö|MQ|È¡µÃ×î´óֵʱMµÄ×ø±ê£®

·ÖÎö ÓÉ

½â´ð ½â£º£¨1£©ÓÉ¡÷PF1F2µÄÃæ»ýΪ3$\sqrt{2}$£¬|F1F2|=6£¬
µÃ$\frac{1}{2}¡Á6¡Á{y}_{P}=3\sqrt{2}$£¬¡à${y}_{P}=\sqrt{2}$£¬
ÓÖ¡ÏPF1F2=arccos$\frac{5\sqrt{3}}{9}$£¬¡à$|{F}_{1}Q|=\frac{5\sqrt{3}}{9}|P{F}_{1}|$£¬
ÔòÓÉ$£¨\frac{5\sqrt{3}}{9}|P{F}_{1}|£©^{2}+£¨\sqrt{2}£©^{2}=|P{F}_{1}{|}^{2}$£¬½âµÃ$|P{F}_{1}|=3\sqrt{3}$£®
¡à$|P{F}_{2}{|}^{2}=|P{F}_{1}{|}^{2}+4{c}^{2}-2•2c•|P{F}_{1}|•\frac{5\sqrt{3}}{9}$£¬½âµÃ£º$|P{F}_{2}|=\sqrt{3}$£®
¡à2a=4$\sqrt{3}$£¬a=2$\sqrt{3}$£¬c=3£¬b2=a2-c2=3£®
¡àÍÖÔ²§¤µÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ£¨1£©Öª£¬${y}_{P}=\sqrt{2}$£¬´úÈë$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£¬¿ÉµÃxp=2£¬
¡àQ£¨2£¬0£©£¬ÉèM£¨x0£¬y0£©£¬Ôò$\frac{{{x}_{0}}^{2}}{12}+\frac{{{y}_{0}}^{2}}{3}=1$£¬¡à${{y}_{0}}^{2}=3-\frac{{{x}_{0}}^{2}}{4}$£®
¡à|MQ|=$\sqrt{£¨{x}_{0}-2£©^{2}+{{y}_{0}}^{2}}$=$\sqrt{{{x}_{0}}^{2}-4{x}_{0}+4+3-\frac{{{x}_{0}}^{2}}{4}}$=$\sqrt{\frac{3}{4}{{x}_{0}}^{2}-4{x}_{0}+7}$£®
¡ß$-2\sqrt{3}¡Ü{x}_{0}¡Ü2\sqrt{3}$£¬¡àµ±${x}_{0}=-2\sqrt{3}$ʱ£¬$|MQ{|}_{max}=\sqrt{16+8\sqrt{3}}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow m=£¨{\sqrt{3}sin2x+2£¬cosx}£©£¬\overrightarrow n=£¨{1£¬2cosx}£©$£¬É躯Êýf£¨x£©=$\overrightarrow m•\overrightarrow n$£®
£¨1£©Çóf£¨x£©ÔÚ$[{0£¬\frac{¦Ð}{4}}]$ÉϵÄ×îÖµ£»
£¨2£©ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬Èôf£¨A£©=4£¬b=1£¬¡÷ABCµÄÃæ»ýΪ$\frac{{\sqrt{3}}}{2}$£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{x¡Ý1}\\{y¡Ý-1}\\{4x+y¡Ü9}\\{x+y¡Ü3}\end{array}\right.$£¬¼Çz=mx+y£¬ÈôzµÄ×î´óֵΪf£¨m£©£¬Ôòµ±m¡Ê[2£¬4]ʱ£¬f£¨m£©×î´óÖµºÍ×îСֵ֮ºÍΪ£¨¡¡¡¡£©
A£®4B£®10C£®13D£®14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÊýÁÐ{an}£¬¶¨Òå{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©
£¨1£©Èôan=n2-n£¬ÊÔÅжÏ{¡÷an}ÊÇ·ñÊǵȲîÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôa1=1£¬¡÷an-an=2n£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¶Ô£¨b£©ÖеÄÊýÁÐ{an}£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{bn}£¬Ê¹µÃb1C${\;}_{n}^{1}$+b2C${\;}_{n}^{2}$+¡­+bnC${\;}_{n}^{n}$=an£¬¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öÊýÁÐ{bn}µÄͨÏʽ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Éèm¡ÊR£¬Èôº¯Êýf£¨x£©=£¨m+1£©x${\;}^{\frac{2}{3}}$+mx+1ÊÇżº¯Êý£¬Ôòf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ[0£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©Çó²»µÈʽx2-4x+3¡Ü0µÄ½â¼¯£»
£¨2£©Çóº¯Êýy=x+$\frac{4}{x}$µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÔÚÕý·½ÌåÖУ¬E£¬FÊÇÀâA'B'ÓëD'C'µÄÖÐµã£¬ÃæEFCBÓëÃæABCDËù³É¶þÃæ½Ç£¨È¡Èñ½Ç£©µÄÕýÇÐֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèA={x|2¡Üx£¼4}£¬B={x|x¡Ý3}£¬ÇóA¡ÈB£¬A¡ÉB£¬∁RA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚ¡÷ABCÖУ¬ÈôA=$\frac{¦Ð}{3}$£¬b=16£¬´ËÈý½ÇÐÎÃæ»ýS=220$\sqrt{3}$£¬ÔòaµÄÖµÊÇ£¨¡¡¡¡£©
A£®$20\sqrt{6}$B£®75C£®51D£®49

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸