精英家教网 > 高中数学 > 题目详情
3.图中的三个正方形块中,着色的正方形的个数依次构成一个数列{an},根据着色的规律,则a4=585,数列{an}的通项公式an=$\frac{{8}^{n}-1}{7}$.

分析 先根据图形求出前后两图的递推关系,然后利用叠加法进行求解,再利用等比数例,求出数列的通项公式.

解答 解:根据图形可知  a1=1,a2=1+8,a3=1+8+8×8,a4=1+8+8×8+8×8×8=585,
不难发现:an+1-an=8n
当n≥2时,
则有:an-an-1=8n-1
an-1-an-2=8n-2

…,
a2-a1=81
等式叠加,
可得:an-a1=8n-1+8n-2+…+81
∴an=a1+(8n-1+8n-2+…+81
an=1+$\frac{8(1-{8}^{n-1})}{1-8}$=$\frac{{8}^{n}-1}{7}$
当n=1时,a1=1,满足条件,
故答案为:585,$\frac{{8}^{n}-1}{7}$

点评 本题主要考查了等比数列的求和,数列中的叠加法求通项,以及识图能力和运算推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x2-$\frac{1}{2}$x+$\frac{1}{4}$,若数列{bn}满足:b1=1,bn+1=2f(bn)(n∈N*).若对?n∈N*,都?M∈Z,使得$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<M恒成立,则整数M的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x3-3x2-9x(0<x<4)有(  )
A.极大值5,极小值-27B.极大值5,极小值-11
C.极大值5,无极小值D.极小值-27,无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知(a+e)x-1-lnx≤0(e是自然对数的底数)对任意x∈[$\frac{1}{e}$,2]都成立,则实数a的最大值为-e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=lnx+$\frac{a}{x}$在区间[1,e]上的最小值为$\frac{3}{2}$,则实数a的值为$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与⊙C1:x2+(y+2)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0)B.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0)C.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3)D.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π
②若α,β均是第一象限的角,且α>β,则sinα>sinβ.
③函数f(x)=|sinx|是周期函数且周期是π.
④把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象.
⑤函数y=sin(x-$\frac{π}{2}$)在[0,π]上是单调递减的.其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{x},1≤x≤2}\\{{e}^{-x},0≤x≤1}\end{array}\right.$,则${∫}_{0}^{2}$f(x)dx=(  )
A.$\frac{1}{e}$+ln2B.-$\frac{1}{e}$+ln2C.1-$\frac{1}{e}$+ln2D.$\frac{1}{e}$+ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题:
①集合{a,b,c,d}的子集个数有16个;
②定义在R上的奇函数f(x)必满足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函数又不是偶函数;
④A=R,B=R,f:x→$\frac{1}{|x|}$,从集合A到集合B的对应关系f是映射;
⑤f(x)=$\frac{1}{x}$在定义域上是减函数.
其中真命题的序号是①②.

查看答案和解析>>

同步练习册答案