精英家教网 > 高中数学 > 题目详情
15.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π
②若α,β均是第一象限的角,且α>β,则sinα>sinβ.
③函数f(x)=|sinx|是周期函数且周期是π.
④把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象.
⑤函数y=sin(x-$\frac{π}{2}$)在[0,π]上是单调递减的.其中真命题的序号是①③④.

分析 求出函数的周期,可判断①③;举出反例α=390°,β=30°,可判断②;根据函数图象的平移变换法则,可判断④;根据三角函数的单调性,可判断⑤.

解答 解:①函数y=sin4x-cos4x=sin2x-cos2x=-cos2x的最小正周期是π,是真命题.
②若α=390°,β=30°,则α,β均是第一象限的角,且α>β,但sinα=sinβ,是假命题.
③函数f(x)=|sinx|是周期函数且周期是π,是真命题.
④把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$得到y=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin2x的图象,是真命题.
⑤函数y=sin(x-$\frac{π}{2}$)=-cosx在[0,π]上是单调递增的,是假命题.
故答案为:①③④

点评 本题以命题的真假判断与应用为载体,考查了三角函数的单调性,周期,平移变换等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=loga$\frac{ax-5}{{{x^2}-a}}$的定义域为A,若3∉A,5∈A,则a的取值范围为$1<a≤\frac{5}{3}或9≤a<25$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在调查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根据调查数据作出如下的列联表:
色盲不色盲合计
38442480
6514520
合计449561000
利用独立性检验的方法来判断色盲与性别有关?你所得到的结论在什么范围内有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.图中的三个正方形块中,着色的正方形的个数依次构成一个数列{an},根据着色的规律,则a4=585,数列{an}的通项公式an=$\frac{{8}^{n}-1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:函数f(x)=|4x-a|-ax(a>0)存在最小值;命题q:关于x的方程2x2-(2a-2)x+3a-7=0有实数根.则使“命题p∨?q为真,p∧?q为假”的一个必要不充分的条件是(  )
A.3≤a<5B.0<a<4C.4<a<5或0≤a≤3D.3<a<5或0≤a<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,CB=3,C A=4,|${\overrightarrow{CA}$+$\overrightarrow{CB}}$|=|${\overrightarrow{CA}$-$\overrightarrow{CB}}$|,M是线段AB上的动点(含 A,B两个端点).若$\overrightarrow{C{M}}$=x$\overrightarrow{C{A}}$+y$\overrightarrow{C{B}}$,(x,y∈R),则|x$\overrightarrow{C{A}}$-y$\overrightarrow{C{B}}}$|的取值范围是[$\frac{12}{5}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知动圆过定点F(0,1),且与定直线y=-1相切.
(Ⅰ)求动圆圆心M所在曲线C的方程;
(Ⅱ)直线l经过曲线C上的点P(x0,y0),且与曲线C在点P的切线垂直,l与曲线C的另一个交点为Q,当x0=$\sqrt{2}$时,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有6列火车在某车站并行的6条轨道上,若快车A不能停在第1道上,货车B不能停在第6道上,则6列火车的停车方法共有(  )
A.480种B.720种C.504种D.600种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{{\sqrt{x-1}}}$+(x-2)0+log2(x-1)定义域为(  )
A.(-∞,2)∪(2,+∞)B.(1,+∞)C.(1,2)∪(2,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案