精英家教网 > 高中数学 > 题目详情
1.已知将函数f(x)=sin2x-2sinxcosx+3cos2x(x∈R)的图象沿x轴向左平移m个单位(m>0)所得函数的图象关于直线x=$\frac{17}{8}$π对称.
①求m的最小值;
②已知点P(α,$\frac{8}{3}$)是函数y=f(x)的图象上的一点,求sin4α的值.

分析 ①利用倍角公式、和差公式、三角函数的图象与性质即可得出.
②把点P(α,$\frac{8}{3}$)代入f(x),化简整理利用倍角公式即可得出.

解答 解:①$f(x)=cos2x-sin2x+2=\sqrt{2}cos(2x+\frac{π}{4})+2$,
将f(x)的图象向左平移m个单位得函数$y(x)=\sqrt{2}cos(2x+2m+\frac{π}{4})+2$,
其对称轴为$x=\frac{17}{8}π$,
∴$2×\frac{17}{8}π+2m+\frac{π}{4}=kπ(k∈Z),又m>0$,
∴${m_{min}}=\frac{π}{4}$.
②∵$f(α)=\sqrt{2}cos(2α+\frac{π}{4})+2=\frac{8}{3}$,
∴$cos(2α+\frac{π}{4})=\frac{{\sqrt{2}}}{3}$,
令$t=2α+\frac{π}{4}$,则$cost=\frac{{\sqrt{2}}}{3}$,$2α=t-\frac{π}{4}$,$4α=2t-\frac{π}{2}$,
∴$sin4α=sin(2t-\frac{π}{2})=-cos2t=1-2{cos^2}t=1-2×\frac{2}{9}=\frac{5}{9}$.

点评 本题考查了倍角公式、和差公式、三角函数的图象与性质、平移变换,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx+$\frac{a}{x-1}$(a为常实数)
(Ⅰ)若?x0∈[e,e2],(e为自然对数的底数,且e≈2.71828…),使得f(x0)>0,求实数a的取值范围;
(Ⅱ)若实数a>0,函数f(x)在(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>2e-$\frac{4}{3}$(e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=(n+1)log2an+1.证明:$\frac{1}{b_1}$++…+$\frac{1}{{{b_{n-1}}}}$+$\frac{1}{b_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知{an}是斐波那契数列,满足a1=1,a2=1,an+2=an+1+an(n∈N*).{an}中各项除以4所得余数按原顺序构成的数列记为{bn},则b2015=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,若曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.直线l与曲线C相交于A、B两点,则|AB|=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x2-cosx,则下列不等式成立的是(  )
A.f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$)D.f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在半球O的直径AB的延长线上取一点P,作PC的切半圆O于点C,又经过P任作一直线交半圆O于点M、N,过C作CD⊥AB,垂足为D
(1)求证:M、O、D、N四点共圆;
(2)求证:∠MDC=∠NDC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知(2x+$\frac{1}{{x}^{2}}$+a)6(a∈Z)的展开式中常数项为1,则(m+an)8的展开式中含m3n5的项的系数为-56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简$\sqrt{1-sin80°}$的结果是(  )
A.$\sqrt{2}$cos5°B.-$\sqrt{2}$cos5°C.-$\sqrt{2}$sin5°D.$\sqrt{2}$sin5°

查看答案和解析>>

同步练习册答案