精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=x2-cosx,则下列不等式成立的是(  )
A.f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$)D.f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$)

分析 由导数判断函数f(x)在区间[0,1]上的单调性,又因f(x)是偶函数,从而判断函数值的大小

解答 解::∵f(x)=x2-cosx为偶函数
又∵f(x)=x2-cosx,
∵f′(x)=2x+sinx,
由x∈(0,1)时,f′(x)>0,
知f(x)在(0,1)为增函数,
∵sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$>cos$\frac{π}{3}$=$\frac{1}{2}$,
∴f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$),
故选:B.

点评 本题考查了函数的奇偶性,利用单调性比较函数值的大小,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.直线y=kx+2k与圆(x-1)2+y2=4相交于M,N两点,若|MN|≤2,则k的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]B.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)C.[-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$]D.(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知z∈C,若|z|-z=2-4i,则z的值是(  )
A.3+4iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{3}{15}$-$\frac{4}{15}$iD.$\frac{3}{25}$-$\frac{4}{25}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数既不是偶函数也不是奇函数的是(  )
A.f(x)=ex+e-xB.f(x)=ex-e-xC.f(x)=x|x|D.f(x)=cos(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知将函数f(x)=sin2x-2sinxcosx+3cos2x(x∈R)的图象沿x轴向左平移m个单位(m>0)所得函数的图象关于直线x=$\frac{17}{8}$π对称.
①求m的最小值;
②已知点P(α,$\frac{8}{3}$)是函数y=f(x)的图象上的一点,求sin4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+a≤0}\\{x≥1}\end{array}\right.$,且z=$\frac{3}{2}$x+y的最大值为4,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}中,a3+a7=16,S10=85,则等差数列{an}公差为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-mx-n.
(1)求函数f(x)在[0,1]上的最小值;
(2)若方程f(x)=$\frac{1}{2}$mx2+(n-m)x-n+1的一个解为1,且该方程还在(0,1)上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.行列式$|{\begin{array}{l}1&2&3\\ 4&5&6\\ 7&8&9\end{array}}|$中,6的代数余子式的值是6.

查看答案和解析>>

同步练习册答案