精英家教网 > 高中数学 > 题目详情
2.已知数列{an}中,an=$\left\{\begin{array}{l}{{2}^{n-1},(n为正奇数)}\\{2n-1,(n为正偶数)}\end{array}\right.$,设数列{an}的前n项和为Sn,则S12=1443.(用数字作答).

分析 由等比数列和等差数列的前n项和公式,利用分组求和法能求出S12

解答 解:数列{an}的前n项和为Sn
Sn=(20+22+24+26+28+210)+(3+7+11+15+19+23),
=$\frac{1-{2}^{10}×4}{1-4}$+$\frac{(3+23)×6}{2}$,
=1443,
故答案为:1443.

点评 本题主要考查数列求和,考查等差数列和等比数列的通项公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.解下列不等式组
(1)$\left\{\begin{array}{l}{{x}^{2}-6x+8>0}\\{\frac{x+3}{x-1}>1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{|x-1|<1}\\{\frac{{x}^{2}-3x-4}{8x-{x}^{2}-15}≥0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ax2-2014x+2015(a>0),在区间[t-1,t+1](t∈R)上函数f(x)的最大值为M,最小值为N.当t取任意实数时,M-N的最小值为1,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A..若m⊥n,m⊥α,n∥β,则α∥βB.若m∥α,n∥β,α∥β,则m∥n
C..若m⊥α,n∥β,α∥β,则m⊥nD..若m∥n,m∥α,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sinθ=$\frac{1}{3}$(θ∈($\frac{π}{2}$,π)),则tan($\frac{3π}{2}$+θ)的值为(  )
A.2$\sqrt{2}$B.-2$\sqrt{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是16$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.甲、乙、丙、丁、戊五人并排站成一排,若甲乙必须相邻,且乙必须在甲的左边,那么不同的站排方法共有24种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-4|+|x-a|.
(I)当a=2时,求函数f(x)>10的解集;
(II)若关于x的不等式f(x)≥1的解集是R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知在长方体ABCD-A1B1C1D1中,AD=A1A=$\frac{1}{2}$AB=2,点E是棱AB上一点,且$\frac{AE}{EB}$=λ.
(1)证明:D1E⊥A1D;
(2)若二面角D1-EC-D的余弦值为$\frac{\sqrt{6}}{3}$,求CE与平面D1ED所成的角.

查看答案和解析>>

同步练习册答案