精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

【答案】B

【解析】分析首先根据双曲线的方程求得其渐近线的斜率并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得利用两点间距离同时求得的值.

详解根据题意,可知其渐近线的斜率为,且右焦点为

从而得到所以直线的倾斜角为

根据双曲线的对称性,设其倾斜角为

可以得出直线的方程为

分别与两条渐近线联立

求得

所以故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率为,且经过点.

1)求椭圆的方程;

2)直线与椭圆相交于两点,若,求为坐标原点)面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线两点处的切线及直线所围成的三角形面积为.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

(1)求证:直线过定点;

(2)求直线被圆所截得的弦长最短时的值;

(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中, OAC的中点,

(1)证明:平面平面ABC

(2)若DAB的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数

1)求b的值,并求出函数的定义域

2)若存在区间,使得时,的取值范围为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意实数都有函数的图象与直线相切,则称函数为“恒切函数”,设函数,其中.

(1)讨论函数的单调性;

(2)已知函数为“恒切函数”,

①求实数的取值范围;

②当取最大值时,若函数也为“恒切函数”,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)作出函数的图象;

2)求函数的单调区间,并指出其单调性;

3)求)的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

同步练习册答案