精英家教网 > 高中数学 > 题目详情
4.设f(x)=ex-ax(a∈R),e为自然对数的底数.
(1)若a=1时,求曲线y=f(x)在x=0处的切线方程;
(2)求函数f(x)在[0,1]上的最小值.

分析 (1)求出函数的导数,计算f′(0),f(0),求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的最小值即可.

解答 解:(1)当a=1时,f(x)=ex-x,
所以f′(x)=ex-1;
∴f′(0)=e0-1=0,f(0)=e0-0=1;    
所以曲线y=f(x)在x=0的切线方程为y=1;
(2)f′(x)=ex-a;
(i)当a≤0时,f′(x)>0恒成立,即函数f(x)在[0,1]上为增函数,
所以函数f(x)在[0,1]上的最小值为f(0)=1;           
(ii)当a>0时,令f′(x)=0得到x=lna;
若lna≤0,即0<a≤1时,在[0,1]上,f′(x)>0,函数f(x)在[0,1]上为增函数,
所以函数f(x)在[0,1]上的最小值为f(0)=1;
若lna≥1,即a≥e时,在[0,1]上,f′(x)<0,函数f(x)在[0,1]上为减函数,
所以函数f(x)在[0,1]上的最小值为f(1)=e-a;         
若0<lna<1,即1<a<e时,在[0,lna)上f′(x)<0,在(lna,1]上f′(x)>0,
即函数f(x)在[0,lna)上单调递减,在(lna,1]上单调递增,
所以函数f(x)在[0,1]上的最小值为f(lna)=a-alna;                   
综上所述,当a≤1时,函数f(x)在[0,1]上的最小值为1;
当1<a<e时,函数f(x)在[0,1]上的最小值为e-a;
当a≥e时,函数f(x)在[0,1]上的最小值为a-alna.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若P=$\sqrt{7}$-1,Q=$\sqrt{11}$-$\sqrt{5}$,则P与Q的大小关系是P>Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={1,2,3,4},B={2,4,7,8},C={1,3,4,5,9},则集合(A∪B)∩C的子集个数是(  )
A.3B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=i2+i的实部与虚部分别是(  )
A.-1,1B.1,-1C.1,1D.-1,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“异驻点”.若函数g(x)=2016x,h(x)=ln(x+1),φ(x)=x3-1的“异驻点”分别为α,β,γ,则α,β,γ的大小关系为(  )
A.α>β>γB.β>α>γC.β>γ>αD.γ>α>β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式组$\left\{{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}}\right.$,表示的平面区域为D,则将D绕原点旋转一周所得区域的面积为(  )
A.30πB.28πC.26πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax,(a∈R)
(Ⅰ)若函数f(x)在点(1,f(1))处切线方程为y=3x+b,求a,b的值;
(Ⅱ)当a>0时,求函数f(x)在[1,2]上的最小值;
(Ⅲ)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(2-x)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,则a3=(  )
A.15B.-15C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=log2(x-1),f(x)=log${\;}_{\frac{1}{2}}$(x+1),
(1)求不等式g(x)≥f(x)的解集;
(2)在(1)的条件下求函数y=g(x)+f(x)的值域.

查看答案和解析>>

同步练习册答案