精英家教网 > 高中数学 > 题目详情
9.若不等式组$\left\{{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}}\right.$,表示的平面区域为D,则将D绕原点旋转一周所得区域的面积为(  )
A.30πB.28πC.26πD.25π

分析 由题意作出可行域D,可得将D绕原点旋转一周所得区域为圆环,求出大圆的半径及小圆的半径,则答案可求.

解答 解:由约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}}\right.$作出平面区域D如图,

联立$\left\{\begin{array}{l}{x-5y+10=0}\\{x+y-8=0}\end{array}\right.$,解得B(5,3);
联立$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-8=0}\end{array}\right.$,解得C(3,5);
又A(0,2),
∴将D绕原点旋转一周所得区域为圆环,且大圆的半径为$\sqrt{{3}^{2}+{5}^{2}}=\sqrt{34}$,小圆的半径为2.
则圆环的面积为34π-4π=30π.
故选:A.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则(  )
A.a1d<0,dS3<0B.a1d>0,dS3>0C.a1d>0,dS3<0D.a1d<0,dS3>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,输出的i的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有3位老师和3 个学生站成一排照相,则任何两个学生都互不相邻的排法总数为(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=ex-ax(a∈R),e为自然对数的底数.
(1)若a=1时,求曲线y=f(x)在x=0处的切线方程;
(2)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且$\frac{1}{f′(x)}$>2,则不等式f(x)>$\frac{1}{2}$x-1的解集是(  )
A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求(x2-$\frac{1}{2x}$)9展开式的:
(1)第6项的二项式系数;
(2)第3项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设z=2x+y,其中实数x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$,则z的最小值为(  )
A.-2B.-4C.-9D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知“0<t<m(m>0)”是“函数f(x)=-x2-tx+3t在区间(0,2)上只有一个零点”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案