精英家教网 > 高中数学 > 题目详情
18.设z=2x+y,其中实数x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$,则z的最小值为(  )
A.-2B.-4C.-9D.-3

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$作出可行域如图,

化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A时直线在y轴上的截距最小,z有最小值.
联立$\left\{\begin{array}{l}{x+2y=0}\\{y=3}\end{array}\right.$,解得A(-6,3),
此时z=2×(-6)+3=-9.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若cosθ=$\frac{1}{3}$,且270°<θ<360°,则cos$\frac{θ}{2}$等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.±$\frac{{\sqrt{6}}}{3}$D.-$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式组$\left\{{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}}\right.$,表示的平面区域为D,则将D绕原点旋转一周所得区域的面积为(  )
A.30πB.28πC.26πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2
(1)它是奇函数还是偶函数?
(2)它在(0,+∞)上是增函数还是减函数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(2-x)6=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,则a3=(  )
A.15B.-15C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱柱ABC一A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1中点,F在AB上,且CF⊥AB,AC=BC=1,AA1=3.
(I)求证:CF∥平面AEB1
(Ⅱ)求平面ABC与平面AB1E所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.命题p:关于x的不等式x2+(a-1)x+a2<0的解集是空集,命题q:已知二次函数f(x)=x2-mx+2满足$f(\frac{3}{2}+x)=f(\frac{3}{2}-x)$,且当x∈[0,a]时,最大值是2,若命题“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,棱长为3的正方体的顶点A在平α上,三条棱AB、AC、AD都在平面α的同侧.若顶点B,C到平面α的距离分别为1,$\sqrt{2}$.建立如图所示的空间直角坐标系,设平面α的一个法向量为(x0,y0,z0),若x0=1,则y0=$\sqrt{2}$,z0=$\sqrt{6}$,且顶点D到平面α的距离是$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,边长为2的正方形ABCD中,BE=BF=$\frac{1}{4}$BC,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于A′点,则三棱锥A′-EFD的体积为(  )
A.$\frac{{\sqrt{21}}}{12}$B.$\frac{{\sqrt{17}}}{12}$C.$\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{17}}}{6}$

查看答案和解析>>

同步练习册答案