精英家教网 > 高中数学 > 题目详情
8.若cosθ=$\frac{1}{3}$,且270°<θ<360°,则cos$\frac{θ}{2}$等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.±$\frac{{\sqrt{6}}}{3}$D.-$\frac{{\sqrt{6}}}{3}$

分析 由已知利用二倍角的三角函数可求${cos^2}\frac{θ}{2}=\frac{2}{3}$,讨论$\frac{θ}{2}$的范围,即可得解cos$\frac{θ}{2}$的值.

解答 解:由$cosθ=\frac{1}{3}$,得$2{cos^2}\frac{θ}{2}-1=\frac{1}{3}$,
进而得${cos^2}\frac{θ}{2}=\frac{2}{3}$,
而由270°<θ<360°,得$135°<\frac{θ}{2}<180°$,
则$cos\frac{θ}{2}=-\sqrt{\frac{2}{3}}=-\frac{{\sqrt{6}}}{3}$.
故选:D.

点评 本题主要考查了二倍角的三角函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2ωx-$\sqrt{3}$cos2ωx(ω>0),且y=f(x)的最小正周期为π.
(1)求函数f(x)的单调递增区间;
(2)已知△ABC的内角A、B、C的对边分别为a,b,c,角C为锐角,且f(C)=$\sqrt{3}$,c=3,sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则(  )
A.a1d<0,dS3<0B.a1d>0,dS3>0C.a1d>0,dS3<0D.a1d<0,dS3>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.
(1)现从这20件产品中任意抽取2件,记不合格的产品数为X,求X的分布列及数学期望;
(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.cos230°-sin230°的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.化简:$\frac{sin(60°+θ)+cos120°sinθ}{cosθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,输出的i的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有3位老师和3 个学生站成一排照相,则任何两个学生都互不相邻的排法总数为(  )
A.36B.72C.144D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设z=2x+y,其中实数x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤3\end{array}\right.$,则z的最小值为(  )
A.-2B.-4C.-9D.-3

查看答案和解析>>

同步练习册答案