精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=|x-2|-|x+1|
(Ⅰ)解不等式:f(x)<2;
(Ⅱ)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求实数t的取值范围.

分析 (Ⅰ)通过讨论x的范围,求出各个区间上的x的范围,取并集即可;(Ⅱ)求出f(x)的最小值,问题转化为t2-$\frac{7}{2}$t≤-3,解出即可.

解答 解:(Ⅰ)x≥2时:f(x)=x-2-x-1=-3<2,成立,
-1<x<2时:f(x)=2-x-x-1=1-2x<2,解得:-$\frac{1}{2}$<x<2,
x≤-1时:f(x)=2-x+x+1=3<2不成立,
故不等式的解集是(-$\frac{1}{2}$,+∞);
(Ⅱ)f(x)=$\left\{\begin{array}{l}{-3,x≥2}\\{1-2x,-1<x<2}\\{3,x≤-1}\end{array}\right.$,
故f(x)的最小值是-3,
若?x∈R,使得f(x)≥t2-$\frac{7}{2}$t恒成立,
即有f(x)min≥t2-$\frac{7}{2}$t,
即有t2-$\frac{7}{2}$t≤-3,解得:$\frac{3}{2}$≤t≤2,
则实数t的取值范围为[$\frac{3}{2}$,2].

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求f(x)=-|sin(x-$\frac{π}{4}$)|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=$\frac{m}{1-i}+\frac{1-i}{2}$(i是虚数单位)的实部与虚部的和为1,则实数m的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an},Sn为其前n项的和,满足Sn=$\frac{n(n+1)}{2}$.
(1)求数列{an}的通项公式;
(2)设数列$\{\frac{1}{a_n}\}$的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:当n≥2,n∈N*时Rn-1=n(Tn-1);
(3)若函数f(x)=$\frac{1}{{(p-1)•{3^{qx}}+1}}$的定义域为R,并且$\lim_{n→∞}$f(an)=0(n∈N*),求证p+q>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式组$\left\{\begin{array}{l}x≤3\\ x+y≥0\\ x-y+2≥0\end{array}\right.$所表示的区域的面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB=3,BC=2,$\overrightarrow{AB}•\overrightarrow{BC}=3$,则AC等于(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{19}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在正项等比数列{an}中,若3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,则$\frac{{{a_{2014}}-{a_{2015}}}}{{{a_{2016}}-{a_{2017}}}}$=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在区间[0,1]上随机取两个数x,y,记P为事件“kx≤y≤$\sqrt{x}$”的概率,若P=$\frac{5}{12}$,则实数k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设Sn是数列{an}的前n项和,an>0,且Sn=$\frac{1}{6}$an(an+3)
(1)求数列{an}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{2}^{n-1}}$,Bn是数列{cn}的前n项和,求Bn.(若改为cn=an+2n-1呢?)
(3)设bn=$\frac{1}{{(a}_{n}-1)({a}_{n}+2)}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案