精英家教网 > 高中数学 > 题目详情
17.在正项等比数列{an}中,若3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,则$\frac{{{a_{2014}}-{a_{2015}}}}{{{a_{2016}}-{a_{2017}}}}$=$\frac{1}{9}$.

分析 设正项等比数列{an}的公比为q>0,根据3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,可得:2×$\frac{1}{2}{a}_{3}$=3a1+2a2,即${a}_{1}{q}^{2}$=3a1+2a1q,解出q,再利用等比数列的通项公式即可得出.

解答 解:设正项等比数列{an}的公比为q>0,∵3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,
∴2×$\frac{1}{2}{a}_{3}$=3a1+2a2,即${a}_{1}{q}^{2}$=3a1+2a1q,
∴q2-2q-3=0,q>0,
解得q=3.
则$\frac{{{a_{2014}}-{a_{2015}}}}{{{a_{2016}}-{a_{2017}}}}$=$\frac{{a}_{2014}-{a}_{2015}}{{q}^{2}({a}_{2014}-{a}_{2015})}$=$\frac{1}{9}$.
故答案为:$\frac{1}{9}$.

点评 本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在正项等比数列{an}中,a1a3=1,a2+a3=$\frac{4}{3}$,则$\lim_{n→∞}$(a1+a2+…+an)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x>0,y>0,x+y+$\sqrt{xy}$=2,则x+y的最小值是(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-2|-|x+1|
(Ⅰ)解不等式:f(x)<2;
(Ⅱ)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等比数列{an}中,a2=9,a5=243,则a1与a7的等比中项为(  )
A.±81B.81C.-81D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知l是直线,α、β是两个不同的平面,下列命题中的真命题是④.(填所有真命题的序号)
①若l∥α,l∥β,则α∥β      ②若α⊥β,l∥α,则l⊥β
③若l∥α,α∥β,则l∥β      ④若l⊥α,l∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛.其中学生甲不参加语文和数学竞赛,则不同的参赛方法共有72种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.2015年7月31日,国际奥委会在吉隆坡正式宣布2022年奥林匹克冬季奥运会(简称冬奥会)在北京和张家口两个城市举办.某中学为了普及奥运会知识,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(1)求甲组学生的平均分;
(2)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(3)①如果用分层抽样的方法从甲组和乙组中抽取5人,再从这5人中随机抽取2人,那么至少有1人在甲组的概率是多少?
②用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取3人,用ξ表示所选3人中甲组的人数,试写出ξ的分布列,并求出ξ的数学期望.
P(K2>k00.1000.0500.010
K2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集为R,集合A={x|$\frac{x-1}{x}$<0},B={x|x≥1},则A∪B等于(  )
A.{x|x>0}B.{x|0<x<1}C.{x|x<1}D.{x|x≤0}

查看答案和解析>>

同步练习册答案