分析 设正项等比数列{an}的公比为q>0,根据3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,可得:2×$\frac{1}{2}{a}_{3}$=3a1+2a2,即${a}_{1}{q}^{2}$=3a1+2a1q,解出q,再利用等比数列的通项公式即可得出.
解答 解:设正项等比数列{an}的公比为q>0,∵3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,
∴2×$\frac{1}{2}{a}_{3}$=3a1+2a2,即${a}_{1}{q}^{2}$=3a1+2a1q,
∴q2-2q-3=0,q>0,
解得q=3.
则$\frac{{{a_{2014}}-{a_{2015}}}}{{{a_{2016}}-{a_{2017}}}}$=$\frac{{a}_{2014}-{a}_{2015}}{{q}^{2}({a}_{2014}-{a}_{2015})}$=$\frac{1}{9}$.
故答案为:$\frac{1}{9}$.
点评 本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2>k0) | 0.100 | 0.050 | 0.010 |
| K | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>0} | B. | {x|0<x<1} | C. | {x|x<1} | D. | {x|x≤0} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com