精英家教网 > 高中数学 > 题目详情
9.从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛.其中学生甲不参加语文和数学竞赛,则不同的参赛方法共有72种.

分析 因为甲不参加物理、化学竞赛,它是一个特殊元素,故对甲参加不参加竞赛进行讨论,利用分类的思想方法解决,最后结果结合加法原理相加即可.

解答 解:根据题意,
若选出4人中不含甲,则有A44种;
若选出4人中含有甲,则有C43•C21•A33种.
∴A44+C43•C21•A33=72.
故答案为:72.

点评 本题主要考查排列、组合及简单计数问题,解排列、组合及简单计数问题时遇到特殊元素时,对特殊元素要优先考虑.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<$\frac{π}{2}}$)的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+f(3)+…f(2016)=4032.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式组$\left\{\begin{array}{l}x≤3\\ x+y≥0\\ x-y+2≥0\end{array}\right.$所表示的区域的面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在正项等比数列{an}中,若3a1,$\frac{1}{2}{a_3},2{a_2}$成等差数列,则$\frac{{{a_{2014}}-{a_{2015}}}}{{{a_{2016}}-{a_{2017}}}}$=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(1)求证:DE∥平面ACF;
(2)若AB=$\sqrt{2}$CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在区间[0,1]上随机取两个数x,y,记P为事件“kx≤y≤$\sqrt{x}$”的概率,若P=$\frac{5}{12}$,则实数k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以181开头的手机号中末位数字是5或8的号码一共有多少个(一个手机号共有11位)?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.3名学生与3名老师站成一排照相,如果要求老师学生相间站,则有72种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用1gx,lgy,lgz,表示下式:
lg$\frac{{x}^{\frac{1}{2}}{y}^{3}}{z{-}^{\frac{1}{2}}}$.

查看答案和解析>>

同步练习册答案