精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(1)求证:DE∥平面ACF;
(2)若AB=$\sqrt{2}$CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.

分析 (1)利用正方形的性质以及中线性质任意得到OF∥DE,利用线面平行的判定定理可证;
(2)取EO的中点G,连接CG,可证CG⊥EO,由EC⊥BD,AC⊥BD,可得平面ACE⊥平面BDE,从而利用面面垂直的性质即可证明CG⊥平面BDE.

解答 (本题满分为14分)证明:(1)连接OF由四边形ABCD是正方形可知,点O为BD的中点,又F为BE的中点,
所以OF∥DE.…(2分)
又OF?平面ACF,DE?平面ACF,
所以DE∥平面ACF.…(6分)
(2)在线段EO上存在点G,使CG⊥平面BDE,
证明如下:取EO的中点G,连接CG,在四棱锥E-ABCD中,AB=$\sqrt{2}$CE,CO=$\frac{\sqrt{2}}{2}$AB=CE,
所以CG⊥EO.…(8分)
又由EC⊥底面ABCD,BD?底面ABCD,
所以EC⊥BD.…(10分)
由四边形ABCD是正方形可知,AC⊥BD,又AC∩EC=C,
所以BD⊥平面ACE,而BD?平面BDE,…(12分)
所以,平面ACE⊥平面BDE,且平面ACE∩平面BDE=EO,
因为CG⊥EO,CG?平面ACE,
所以CG⊥平面BDE.…(14分)

点评 本题主要考查了线面平行的判定定理以及线面垂直的判定定理和性质定理的运用,考查了空间想象能力和推理论证能力,关键是熟练掌握相关定理的条件及结论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)在定义域[2-a,3]上是偶函数,在[0,3]上单调递增,并且f(-m2-$\frac{a}{5}$)>f(-m2+2m-2),则m的取值范围是(  )
A.$(1-\sqrt{2},\sqrt{2}]$B.$[1-\sqrt{2},\sqrt{2}]$C.$[\frac{1}{2},\sqrt{2}]$D.$(\frac{1}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数z是方程x2+2x+10=0解,且Imz<0,若$\frac{a}{z}$+$\overline{z}$=bi(其中a、b为实数,i为虚数单位,)Imz表示z的虚部);
(I) 求复数w=a+bi的模;
(Ⅱ)若不等式x2+kx-a≥0在x∈[0,5]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等比数列{an}中,a2=9,a5=243,则a1与a7的等比中项为(  )
A.±81B.81C.-81D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直角△AOB的面积为1,O为直角顶点.设向量$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow{b}$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,则$\overrightarrow{PA}•\overrightarrow{PB}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛.其中学生甲不参加语文和数学竞赛,则不同的参赛方法共有72种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知随机变量X~B(6,$\frac{\sqrt{2}}{2}$),则P(X≤5)=(  )
A.$\frac{7}{8}$B.$\frac{1}{8}$C.$\frac{63}{64}$D.$\frac{31}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知{an}是正项数列,a1=1,且点($\sqrt{a_n}$,an+1)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,bn+1=bn+2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域是R,对任意实数x,满足f(x+2)=-f(x),求证:函数f(x)是周期函数.

查看答案和解析>>

同步练习册答案