精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)在定义域[2-a,3]上是偶函数,在[0,3]上单调递增,并且f(-m2-$\frac{a}{5}$)>f(-m2+2m-2),则m的取值范围是(  )
A.$(1-\sqrt{2},\sqrt{2}]$B.$[1-\sqrt{2},\sqrt{2}]$C.$[\frac{1}{2},\sqrt{2}]$D.$(\frac{1}{2},\sqrt{2}]$

分析 根据函数奇偶性的定义先求出a的值,根据函数奇偶性和单调性的性质将不等式进行转化进行求解即可.

解答 解:因为函数f(x)在定义域[2-a,3]上是偶函数,所以2-a+3=0,所以a=5.
所以$f(-{m^2}-\frac{a}{5})>f(-{m^2}+2m-2)$,即f(-m2-1)>f(-m2+2m-2),
所以函数f(x)在[-3,0]上单调递减,而-m2-1<0,-m2+2m-2=-(m-1)2-1<0,
所以由f(-m2-1)>f(-m2+2m-2)得,
$\left\{{\begin{array}{l}{-3≤-{m^2}-1≤0}\\{-3≤-{m^2}+2m-2≤0}\\{-{m^2}-1<-{m^2}+2m-2}\end{array}}\right.$,
解得$\frac{1}{2}<m≤\sqrt{2}$.
故选:D

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性的关系,将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的前n和为Sn,a1=1.当n≥2时,an+2Sn-1=n,则S2016=(  )
A.$\frac{2015}{2}$B.1006C.1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式(x2-x+1)(x-4)(6-x)>0的解集是(  )
A.{x|x<4或x>6}B.{x|x<-6或x>-4}C.{x|4<x<6}D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,an是Sn和1的等差中项.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直角坐标平面,已知两定点A(1,0)、B(1,1)和一动点M(x,y)满足$\left\{\begin{array}{l}0≤\overrightarrow{OM}•\;\overrightarrow{OA}≤1\\ 0≤\overrightarrow{OM}•\;\overrightarrow{OB}≤2\end{array}\right.$,则点P(x+y,x-y)构成的区域的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ<$\frac{π}{2}}$)的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+f(3)+…f(2016)=4032.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知复数z=$\frac{1-i}{{{{(1+i)}^2}}}$,则z的实部为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数y=sinx-$\sqrt{3}$cosx的图象沿x轴向右平移a个单位(a>0),所得图象关于y轴对称,则a的值可以是(  )
A.$\frac{π}{6}$B.$\frac{π}{2}$C.-$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(1)求证:DE∥平面ACF;
(2)若AB=$\sqrt{2}$CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案