精英家教网 > 高中数学 > 题目详情
20.不等式组$\left\{\begin{array}{l}x≤3\\ x+y≥0\\ x-y+2≥0\end{array}\right.$所表示的区域的面积为16.

分析 作出不等式组对应的平面区域,求出交点坐标,

解答 解:由不等式组作出平面区域如图所示(阴影部分),

则由$\left\{\begin{array}{l}x+y=0\\ x-y=-2\end{array}\right.$,$\left\{\begin{array}{l}x=3\\ x-y=-2\end{array}\right.$,$\left\{\begin{array}{l}x=3\\ x+y=0\end{array}\right.$得A(-1,1),B(3,5),C(3,-3),
所以${S_{△ABC}}=\frac{1}{2}×8×4=16$,
故答案为:16.

点评 本题主要考查三角形面积的计算,根据二元一次不等式组作出对应的区域是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.不等式$\frac{1}{x-1}$>x+1的解集为(  )
A.{x|-$\sqrt{2}$<x<$\sqrt{2}$}B.{x|x>1}C.{x|x<-$\sqrt{2}$或1<x<$\sqrt{2}$}D.{x|1<x<$\sqrt{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定理:平面内的一条直线与平面的一条斜线在平面内的射影垂直,则这条线段垂直于斜线.
试证明此定理:如图所示:若PA⊥α,A是垂足,斜线PO∩α=O,a?α,a⊥AO,试证明a⊥PO.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x>0,y>0,x+y+$\sqrt{xy}$=2,则x+y的最小值是(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数z是方程x2+2x+10=0解,且Imz<0,若$\frac{a}{z}$+$\overline{z}$=bi(其中a、b为实数,i为虚数单位,)Imz表示z的虚部);
(I) 求复数w=a+bi的模;
(Ⅱ)若不等式x2+kx-a≥0在x∈[0,5]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-2|-|x+1|
(Ⅰ)解不等式:f(x)<2;
(Ⅱ)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等比数列{an}中,a2=9,a5=243,则a1与a7的等比中项为(  )
A.±81B.81C.-81D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从五名学生中选出四人分别参加语文、数学、英语和专业综合知识竞赛.其中学生甲不参加语文和数学竞赛,则不同的参赛方法共有72种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-$\frac{1}{x}$,g(x)与f(x)的图象关于点M(-$\frac{1}{2}$,$\frac{1}{2}$)对称.
(1)求g(x)解析式;
(2)若g(2x)=a有解,求a的取值范围.

查看答案和解析>>

同步练习册答案