精英家教网 > 高中数学 > 题目详情
10.已知方程$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{16+k}$=1,表示焦点在坐标轴上的椭圆,求k的取值范围.

分析 直接利用椭圆的性质,得到不等式,然后求解k的范围.

解答 解:方程$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{16+k}$=1,表示焦点在坐标轴上的椭圆,
可得:$\left\{\begin{array}{l}25-k>0\\ 16+k>0\\ 25-k≠16+k\end{array}\right.$,解得k∈(-16,$\frac{9}{2}$)∪($\frac{9}{2}$,25).
k的取值范围:(-16,$\frac{9}{2}$)∪($\frac{9}{2}$,25).

点评 本题考查椭圆的简单性质的应用,注意椭圆与圆的区别.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知等边△ABC的边长为1,D为边AC的中点,则$\overrightarrow{AB}$•$\overrightarrow{BD}$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若曲线f(x)在点A(x1,y1)处切线的斜率为kA,曲线y=g(x)在点B(x2,y2)处切线的斜率为kB(x1≠x2),将$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$的值称为这两曲线在A,B间的“异线曲度”,记作φ(A,B),现给出以下四个命题:
①已知曲线f(x)=x3,g(x)=x2-1,且A(1,1),B(2,3),则φ(A,B)>$\frac{\sqrt{2}}{2}$;
②存在两个函数y=f(x),y=g(x),其图象上任意两点间的“异线曲度”为常数;
③已知抛物线f(x)=x2+1,g(x)=x2,若x1>x2>0,则φ(A,B)<$\frac{2\sqrt{5}}{5}$;
④对于曲线f(x)=ex,g(x)=e-x,当x1-x2=1时,若存在实数t,使得t•φ(A,B)>1恒成立,则t的取值范围是[1,+∞].
其中正确命题的个数是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=alnx+bx-b,g(x)=$\frac{ex}{e^x}$,其中a,b∈R.
(Ⅰ)求g(x)的极大值;
(Ⅱ)设b=1,a>0,若|f(x2)-f(x1)|<|$\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}$|对任意的x1,x2∈[3,4](x1≠x2)恒成立,求a的最大值;
(Ⅲ)设a=-2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在s,t(s≠t),使f(s)=f(t)=g(x0)成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的奇函数f(x)的图象关于直线x=2对称,且x∈[0,2]时,f(x)=log2(x+1),则f(7)=(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,ABCDEF是变长为2的正六边形,以A为极点,射线AB为极轴建立极坐标系,若正六边形在极轴上方,在ρ≥0,θ∈[0,2π]的范围内,写出正六边形各个顶点的极坐标,并将它们化为直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四面体ABCD中,EFGH分别是AB、AC、DC、DB的中点.
(1)求证:四边形EFGH是平行四边形;
(2)设P∈AD,Q∈BC,求证:PQ被平面EFGH平分;
(3)平面EFGH是否将该四面体的体积二等分?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,P是菱形ABCD所在平面外的一点,且∠DAB=60°,边长为a.侧面PAD为正三角形,其所在平面垂直于底面ABCD,PB与平面AC所成的角为θ,则θ=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(sinx,2cosx),$\overrightarrow{b}$=($2\sqrt{3}$cosx,-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)在△ABC中,若∠A满足$f(A-\frac{π}{6})=1$,且△ABC的面积为8,求△ABC周长的最小值.

查看答案和解析>>

同步练习册答案