精英家教网 > 高中数学 > 题目详情
15.如图,ABCDEF是变长为2的正六边形,以A为极点,射线AB为极轴建立极坐标系,若正六边形在极轴上方,在ρ≥0,θ∈[0,2π]的范围内,写出正六边形各个顶点的极坐标,并将它们化为直角坐标.

分析 先求出极坐标,再利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标.

解答 解:依题意,点A、B、C、D、E、F的极坐标分别为:A(0,0),B(2,0),C$(2\sqrt{3},\frac{π}{6})$,D$(4,\frac{π}{3})$,E$(2\sqrt{3},\frac{π}{2})$,F$(2,\frac{2π}{3})$.
化为直角坐标:A(0,0),B(2,0),C$(3,\sqrt{3})$,D$(2,2\sqrt{3})$,E$(0,2\sqrt{3})$,F$(-1,\sqrt{3})$.

点评 本题考查了正六边形的性质、极坐标化为直角坐标,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,PA为圆O的切线,切点为A,直径BC⊥OP,连接AB交OP于点D,证明:
(Ⅰ)PA=PD;
(Ⅱ)PA•AC=AD•OC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,⊙O中的弦AB与直径CD相交于点P,M为DC延长线上一点,MN与⊙O相切于点N,若AP=8,PB=6,PD=4,MC=2,则CP=12,MN=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-a(x-1),其中a>0.
(1)若函数f(x)在(0,+∞)上有极大值0,求a的值;
(2)讨论并求出函数f(x)在区间$[\frac{1}{e},e]$上的最大值;
(3)在(2)的条件下设h(x)=f(x)+x-1,对任意x1,x2∈(0,+∞)(x1≠x2),证明:不等式$\frac{{{x_1}-{x_2}}}{{h({x_1})-h({x_2})}}<\frac{{{x_1}+{x_2}}}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知方程$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{16+k}$=1,表示焦点在坐标轴上的椭圆,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+$\frac{1}{2}$(x-a)2(a为常数),当x=1时,f(x)取得极值.
(1)求a的值,并写出f(x)的单调增区间;
(2)若关于x的方程f(x)=b在(0,3]上有且只有一解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.分别编有1,2,3,4,5号码的人与椅,其中i号人不坐i号椅(i=1,2,3,4,5)的不同坐法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a∈R,若关于x的方程x2-2x+|a+1|+|a|=0有实根,则a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,点P(xP,yP)和点Q(xQ,yQ)满足$\left\{\begin{array}{l}{x_Q}={x_P}+{y_P}\;\\{y_Q}=-{x_P}+{y_P}\;\end{array}$按此规则由点P得到点Q,称为直角坐标平面的一个“点变换”.在此变换下,若$\frac{{|\overrightarrow{OP}|}}{{|\overrightarrow{OQ}|}}$=m,向量$\overrightarrow{OP}$与$\overrightarrow{OQ}$的夹角为θ,其中O为坐标原点,则msinθ的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案