精英家教网 > 高中数学 > 题目详情
5.如图,PA为圆O的切线,切点为A,直径BC⊥OP,连接AB交OP于点D,证明:
(Ⅰ)PA=PD;
(Ⅱ)PA•AC=AD•OC.

分析 (Ⅰ)连结AC,由已知条件推导出∠BAP=∠ADP,即可证明PA=PD.
(Ⅱ)连结OA,由已知条件推导出△PAD∽△OCA,由此能证明PA•AC=AD•OC.

解答 证明:(Ⅰ)连结AC,
∵直径BC⊥OP,连接AB交PO于点D,BC是直径,
∴∠C+∠B=90°,∠ODB+∠B=90°,
∴∠C=∠ODB,
∵直线PA为圆O的切线,切点为A,
∴∠C=∠BAP,
∵∠ADP=∠ODB,∴∠BAP=∠ADP,
∴PA=PD.
(Ⅱ)连结OA,由(Ⅰ)得∠PAD=∠PDA=∠ACO,
∵∠OAC=∠ACO,∴△PAD∽△OCA,
∴$\frac{PC}{OC}=\frac{AD}{AC}$,
∴PA•AC=AD•OC.

点评 本题考查线段相等的证明,考查线段乘积相等的证明,是中档题,解题时要认真审题,注意弦切角定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=(x2+bx+c)ex在(-∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,且f(x1)=x1,则关于x的方程[f(x)]2+(b+2)f(x)+b+c=0的不同实根个数是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直三棱柱ABC-A1B1C1中,已知AA1=BC=AB=2,AB⊥BC.
(1)求四棱锥A1-BCC1B1的体积;
(2)求二面角B1-A1C-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点B(4,0)、C(2,2),平面直角坐标系上的动点P满足$\overrightarrow{OP}=λ•\overrightarrow{OB}+μ•\overrightarrow{OC}$(其中O是坐标原点,且1<λ≤a,1<μ≤b),若动点P组成的区域的面积为8,则a+b的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等边△ABC的边长为1,D为边AC的中点,则$\overrightarrow{AB}$•$\overrightarrow{BD}$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC所在平面上一点P满足$\overrightarrow{PA}+\overrightarrow{PC}=m\overrightarrow{AB}({m>0,m为常数})$,若△ABP的面积为6,则△ABC的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是某市11月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200,表示空气重度污染,该市某校准备举行为期3天(连续3天)的运动会,在11月1日至11月13日任意选定一天开幕.

(Ⅰ)求运动会期间未遇到空气重度污染的概率;
(Ⅱ)求运动会期间至少两天空气质量优良的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三角形ABC中,D,E为边AB的三等分点,已知$\overrightarrow{CA}=3\overrightarrow{a}$,$\overrightarrow{CB}=2\overrightarrow{b}$,求$\overrightarrow{CD}$和$\overrightarrow{CE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,ABCDEF是变长为2的正六边形,以A为极点,射线AB为极轴建立极坐标系,若正六边形在极轴上方,在ρ≥0,θ∈[0,2π]的范围内,写出正六边形各个顶点的极坐标,并将它们化为直角坐标.

查看答案和解析>>

同步练习册答案