精英家教网 > 高中数学 > 题目详情
17.如图是某市11月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200,表示空气重度污染,该市某校准备举行为期3天(连续3天)的运动会,在11月1日至11月13日任意选定一天开幕.

(Ⅰ)求运动会期间未遇到空气重度污染的概率;
(Ⅱ)求运动会期间至少两天空气质量优良的概率.

分析 (Ⅰ)该校运动会开幕日共有13种选择,其中遇到空气重度污染的选择有:5日,6日,7日,11日,12日,13日,根据概率公式计算即可.
(Ⅱ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,根据概率公式计算即可.

解答 解:(Ⅰ)该校运动会开幕日共有13种选择,
其中遇到空气重度污染的选择有:5日,6日,7日,11日,12日,13日,
所以运动会期间未遇到空气重度污染的概率是P1=1-$\frac{6}{13}$=$\frac{7}{13}$;
(Ⅱ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,
所以运动会期间至少两天空气质量优良的概率是P2=$\frac{7}{13}$.

点评 本题考查了古典概型及其概率计算公式,训练了学生的读图能力,是基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知sinα+sinβ=$\frac{\sqrt{3}}{3}$(cosβ-cosα),且α∈(0,π),β∈(0,π),则α-β等于(  )
A.-$\frac{2π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a,b∈{1,2,3},那么函数f(x)=x2+bx+a无零点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,PA为圆O的切线,切点为A,直径BC⊥OP,连接AB交OP于点D,证明:
(Ⅰ)PA=PD;
(Ⅱ)PA•AC=AD•OC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题:
①已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-2},x≥0}\\{{2}^{-x},x<0}\end{array}\right.$,则f[f(-2)]=4;
②已知O为平面内任意一点,A、B、C是平面内互不相同的三点,且满足$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$.x+y=1,则A、B、C三点共线;
③已知平面α∩平面β=l,直线a?α且a⊥直线l,直线b?β,则a⊥b是α⊥β的充要条件;
④若△ABC是锐角三角形,则cosA<sinB;
⑤若f(x)=sin(2x+φ)-cos(2x-φ)的最大值为1,且φ∈(0,$\frac{π}{2}$),则f(x)的单调递增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z).
其中真命题的序号为①②④(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某工厂生产A,B两种产品,其质量按测试指标划分,指标大于或等于88为合格品,小于88为次品.现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指杯[80,84)[84,88)[88,92)[92.96)[96,100】
产品A61442317
产品B81740305
(Ⅰ)试分析估计产品A,B为合格品的概率;
(Ⅱ)生产1件产品A,若是合格品则盈利45元.若是次品则亏损10元;生产1件产品B,若是合格品则盈利60元.若是次品则亏损15元;在(Ⅰ)的前提下,(i)X为生产1件产品A和1件产品B所得的总利润,求随机变量的分布列和数学期望;(ii)求生产5件产品B所得利润不少于150元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ex-2x2+x,g(x)=f(x)+2x2-2x-1
(1)证明:函数f(x)在R上至少有两个极值点;
(2)证明:g(x)≥0,且2×3×…×(n+1)<($\sqrt{e}$)${\;}^{{n}^{2}+n}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,⊙O中的弦AB与直径CD相交于点P,M为DC延长线上一点,MN与⊙O相切于点N,若AP=8,PB=6,PD=4,MC=2,则CP=12,MN=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.分别编有1,2,3,4,5号码的人与椅,其中i号人不坐i号椅(i=1,2,3,4,5)的不同坐法有多少种?

查看答案和解析>>

同步练习册答案