【题目】已知函数
.
(Ⅰ)讨论
的单调性;
(Ⅱ)若
有两个零点,求
的取值范围.
【答案】(Ⅰ)见解析;(Ⅱ)
.
【解析】
试题分析:(Ⅰ)先求得
再根据1,0,2a的大小进行分类确定
的单调性;(Ⅱ)借助第(Ⅰ)问的结论,通过分类讨论函数的单调性,确定零点个数,从而可得a的取值范围为
.
试题解析:(Ⅰ)![]()
(Ⅰ)设
,则当
时,
;当
时,
.
所以f(x)在
单调递减,在
单调递增.
(Ⅱ)设
,由
得x=1或x=ln(-2a).
①若
,则
,所以
在
单调递增.
②若
,则ln(-2a)<1,故当
时,
;
当
时,
,所以
在
单调递增,在
单调递减.
③若
,则
,故当
时,
,当
时,
,所以
在
单调递增,在
单调递减.
(Ⅱ)(Ⅰ)设
,则由(Ⅰ)知,
在
单调递减,在
单调递增.
又
,取b满足b<0且
,
则
,所以
有两个零点.
(Ⅱ)设a=0,则
,所以
只有一个零点.
(iii)设a<0,若
,则由(Ⅰ)知,
在
单调递增.
又当
时,
<0,故
不存在两个零点;若
,则由(Ⅰ)知,
在
单调递减,在
单调递增.又当
时
<0,故
不存在两个零点.
综上,a的取值范围为
.
科目:高中数学 来源: 题型:
【题目】举行动物运动会其中有小兔大兔接力赛跑一项,跑道从起点
经过点
再到终点
,其中
米,
米,规定小兔跑第一棒从
到
,大兔在
处接力完成跑第二棒从
到
,假定接力赛跑时小兔大兔的各自速度都是均匀的,且它们的速度之和为定值10米/秒,试问小兔和大兔应以怎样的速度接力赛跑,才能使接力赛成绩最好(所需时间最短),并求其最短时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图.
![]()
现在上述图(3)中随机选取一个点,则此点取自阴影部分的概率为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
![]()
(1)若从以上五家“农家乐”中随机抽取两家深人调查,记
为“入住率超过0.6的农家乐的个数,求
的概率分布列
(2)z=lnx,由散点图判断
与
哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a,
的结果精确到0.1)
(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据
,
,
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右两焦点分别为
、
.
(1)若矩形
的边
在
轴上,点
、
均在
上,求该矩形绕
轴旋转一周所得圆柱侧面积
的取值范围;
(2)设斜率为
的直线
与
交于
、
两点,线段
的中点为
(
),求证:
;
(3)过
上一动点
作直线
,其中
,过
作直线
的垂线交
轴于点
,问是否存在实数
,使得
恒成立,若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足:集合
中至少存在三个不同的数构成等比数列,则称函数
是等比源函数.
(
)判断下列函数:①
;②
;③
中,哪些是等比源函数?(不需证明)
(
)判断函数
是否为等比源函数,并证明你的结论.
(
)证明:
,
,函数
都是等比源函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com