| A. | $\frac{7}{16}$ | B. | $\frac{9}{16}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
分析 先确定概率类型是几何概型中的面积类型,再设甲到x点,乙到y点,建立甲先到,乙先到满足的条件,再画出并求解0<x<24,0<y<24可行域面积,再求出满足条件的可行域面积,由概率公式求解.
解答 解:设甲、乙两船到达泊位的时刻分别为x,y.则作出如图所示的区域.![]()
本题中,区域D的面积S1=242,
区域d的面积S2=242-182.
∴P=$\frac{{S}_{2}}{{S}_{1}}$=$\frac{2{4}^{2}-1{8}^{2}}{2{4}^{2}}$=$\frac{7}{16}$
即两船中有一艘在停泊位时另一船必须等待的概率为$\frac{7}{16}$.
故选:A
点评 本题主要考查建模、解模能力;解答关键是利用线性规划作出事件对应的平面区域,再利用几何概型概率公式求出事件的概率.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | -5 | C. | 11 | D. | -11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a的最小值为-3 | B. | a的最小值为-4 | C. | a的最大值为2 | D. | a的最大值为4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{65}$ | B. | $\frac{33}{65}$ | C. | $\frac{56}{65}$ | D. | $\frac{63}{65}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$+1 | D. | $\sqrt{3}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com