精英家教网 > 高中数学 > 题目详情
9.甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随即到达,则两船中有一艘在停泊位时,另一艘船必须等待的概率为(  )
A.$\frac{7}{16}$B.$\frac{9}{16}$C.$\frac{1}{2}$D.$\frac{5}{6}$

分析 先确定概率类型是几何概型中的面积类型,再设甲到x点,乙到y点,建立甲先到,乙先到满足的条件,再画出并求解0<x<24,0<y<24可行域面积,再求出满足条件的可行域面积,由概率公式求解.

解答 解:设甲、乙两船到达泊位的时刻分别为x,y.则作出如图所示的区域.
本题中,区域D的面积S1=242
区域d的面积S2=242-182
∴P=$\frac{{S}_{2}}{{S}_{1}}$=$\frac{2{4}^{2}-1{8}^{2}}{2{4}^{2}}$=$\frac{7}{16}$
即两船中有一艘在停泊位时另一船必须等待的概率为$\frac{7}{16}$.
故选:A

点评 本题主要考查建模、解模能力;解答关键是利用线性规划作出事件对应的平面区域,再利用几何概型概率公式求出事件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求$\frac{1}{|FA|}+\frac{1}{|FB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=4{sin^2}x+4\sqrt{3}sinxcosx+5$,若不等式f(x)≤m在$[0,\frac{π}{2}]$上有解,则实数m的最小值为(  )
A.5B.-5C.11D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$对于任意的x∈(1,+∞)恒成立,则(  )
A.a的最小值为-3B.a的最小值为-4C.a的最大值为2D.a的最大值为4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(Ⅰ)解不等式-x2+4x+5<0;
(Ⅱ)解不等式$\frac{2x-1}{3x+1}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$0<α<β<\frac{π}{2},sinα=\frac{3}{5},cos(β-α)=\frac{12}{13}$,则sinβ的值为(  )
A.$\frac{16}{65}$B.$\frac{33}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=$\sqrt{2}$,AA1=3,E为CD上一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求三棱锥B1-EA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(0,-1)是抛物线C:x2=2py(p>0)准线上的一点,点F是抛物线C的焦点,点P在抛物线C上且满足|PF|=m|PA|,当m取最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则此双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线y=x+1被曲线$y=\frac{1}{2}{x^2}-1$截得的线段AB的长为$2\sqrt{10}$.

查看答案和解析>>

同步练习册答案