分析 直线y=x+1和曲线$y=\frac{1}{2}{x^2}-1$联立方程组,求出它们的交点坐标,再用两点间距离公式计算得答案.
解答 解:解方程组$\left\{\begin{array}{l}{y=x+1}\\{y=\frac{1}{2}{x}^{2}-1}\end{array}\right.$,
整理得x2-2x-4=0,
解得x=$1+\sqrt{5}$或x=$1-\sqrt{5}$.
∴直线y=x+1被曲线$y=\frac{1}{2}{x^2}-1$截得的交点坐标是A($1+\sqrt{5}$,$2+\sqrt{5}$ ),B($1-\sqrt{5}$,$2-\sqrt{5}$),
∴直线y=x+1被曲线$y=\frac{1}{2}{x^2}-1$截得的线段的长|AB|=$\sqrt{(1+\sqrt{5}-1+\sqrt{5})^{2}+(2+\sqrt{5}-2+\sqrt{5})^{2}}$=$2\sqrt{10}$.
故答案为:$2\sqrt{10}$.
点评 本题考查直线与曲线截得的线段长的求法,考查两点间距离公式的运用,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{16}$ | B. | $\frac{9}{16}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若${z_1}^2+{z_2}^2>0$,则 ${z_1}^2>-{z_2}^2$ | |
| B. | $|{{z_1}-{z_2}}|=\sqrt{{z_1}^2+{z_2}^2-4{z_1}{z_2}}$ | |
| C. | ${z_1}^2+{z_2}^2=0?{z_1}={z_2}$ | |
| D. | |z1|2=|$\overline{{z}_{1}}$|2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1或$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 | ||
| C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1或$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com