精英家教网 > 高中数学 > 题目详情
19.函数f(x)=(x-1)2(x-2)在闭区间[0,3]上的最大值为4.

分析 求出函数的导数,通过导数为0,求出极值点,比较极值点的函数值与端点的函数值,即可得到所求的最值.

解答 解:因为函数f(x)=(x-1)2(x-2)=x3-4x2+5x-2,
所以函数f′(x)=3x2-8x+5,
令3x2-8x+5=0,解得x=1,或x=$\frac{5}{3}$,
因为f(3)=4,
f(1)=0,
f(0)=-2;
f($\frac{5}{3}$)=$-\frac{4}{27}$
所以函数的最大值为:4.
故答案为:4.

点评 本题是基础题,考查函数与导函数的关系,函数的最值的求法,考查计算能力,注意端点的函数的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若数列{an}的通项公式是an=(-1)n(2n-1),则a1+a2+a3+…+a100=(  )
A.-200B.-100C.200D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过圆O外一点P向圆引两条切线PA、PB和割线PCD,从A点作弦AE平行于CD,连接BE交CD于F.
(Ⅰ)求证:A、F、B、P四点共圆.
(Ⅱ)求证:BE平分线段CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}(an>0)的首项为1,且前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,且当x=$\frac{1}{2}$时,函数f(x)=$\frac{1}{2}$an•x2+(2-n-an+1)•x取得极值.
(1)若bn=2n-1•an,证明数列{bn}为等差数列;
(2)设数列cn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,{cn}的前n项和为Sn,若不等式mSn<n+4(-1)n对任意的正整数n恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足:a1=1,an=n+an-1(n≥2,n∈N*),则数列{an}的通项公式为$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用边长为10cm的正方形铁片,在四个角剪去大小相同的小正方形,将四边形折起做一无盖小盒,问剪去的小正方形的边长为多少时,使得小盒的容积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在数列{an}中,a1=2,an+1=3an+2,则a2015的值为(  )
A.32014B.32014-1C.32015D.32015-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果数列{an}从第二项开始,每一项与前一项的差构成一个公差不为零的等差数列,那么称数列{an}为二阶等差数列.试构造一个二阶等差数列,其通项公式an=n2-2n+2.

查看答案和解析>>

同步练习册答案