精英家教网 > 高中数学 > 题目详情
4.已知抛物线x2=4y上的点M到焦点的距离是5,则点M到准线的距离是5.

分析 由抛物线的定义,可得点M到准线的距离等于点M到焦点的距离,即可得出结论.

解答 解:由抛物线的定义,可得点M到准线的距离等于点M到焦点的距离.
∵抛物线x2=4y上的点M到焦点的距离是5,
∴点M到准线的距离是5.
故答案为:5.

点评 本题考查抛物线的定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设α,β,γ为平面,m,n,l为直线,则m⊥β的一个充分条件是(  )
A.α⊥β,α∩β=l,m⊥lB.n⊥α,m⊥α,n⊥βC.α⊥γ,β⊥γ,m⊥αD.α⊥γ,α∩γ=m,β⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积(  )
A.128B.±128C.64D.±64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.2015年4月22日,亚非领导人会议在印尼雅加达举行,某五国领导人A、B、C、D、E除B与E、D与E不单独会晤外,其他领导人两两之间都要单独会晤.现安排他们在两天的上午、下午单独会晤(每人每个半天最多只进行一次会晤),那么安排他们单独会晤的不同方法共有48种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为60°的两个单位向量,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$的值及|$\overrightarrow{a}$+$\overrightarrow{b}$|;      
(2)设实数t满足($\overrightarrow{a}$-t$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(  )
A.y=-x2B.y=2-|x|C.y=|$\frac{1}{x}$|D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在直三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,侧棱AA1的长为$\frac{{\sqrt{3}}}{2}$,P、Q分别是AB、AC上的点,且PQ∥BC,如图.
(1)设面A1PQ与面A1B1C1相交于l,求证:l∥B1C1
(2)若平面A1PQ⊥面PQB1C1,试确定P点的位置,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一盒中装有12个同样大小的球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,则取出的1个球是红球或黑球或白球的概率为$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过点F且垂直于一条渐近线的直线与另一条渐近线于点B,垂足为A,若2$\overrightarrow{FA}$+$\overrightarrow{FB}$=$\overrightarrow{0}$,则C的离心率e=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案