| A. | $(\frac{2}{3},1)$ | B. | $[\frac{3}{4},1)$ | C. | $(\frac{2}{3},\frac{3}{4}]$ | D. | ($\frac{2}{3}$,+∞) |
分析 根据f(x)为减函数,以及减函数定义、反比例函数和一次函数单调性即可得出$\left\{\begin{array}{l}{a>0}\\{2-3a<0}\\{\frac{a}{1}≤(2-3a)•1+1}\end{array}\right.$,解该不等式组即可得出实数a的取值范围.
解答 解:f(x)是R上的减函数;
∴$\left\{\begin{array}{l}{a>0}\\{2-3a<0}\\{\frac{a}{1}≤(2-3a)•1+1}\end{array}\right.$;
解得$\frac{2}{3}<a≤\frac{3}{4}$;
∴实数a的取值范围是$(\frac{2}{3},\frac{3}{4}]$.
故选C.
点评 考查减函数的定义,分段函数单调性的判断,以及反比例函数和一次函数的单调性.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $2-\sqrt{2}$ | C. | $2\sqrt{2}+2$ | D. | $2\sqrt{2}-2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com