精英家教网 > 高中数学 > 题目详情
12.过y2=4x的焦点F作两条弦AB和CD,且AB⊥x轴,|CD|=2|AB|,则弦CD所在直线的方程是x+y+1=0或x+y-1=0.

分析 根据题意知AB为抛物线的通径进而求出|AB|和|CD|,满足条件的直线CD有两条,验证选项B,把直线和抛物线方程联立,求得x1+x2,进而根据抛物线的定义得出的|CD|符合题意.同样的方法可知x+y-1=0也符合题意.故可得出答案.

解答 解:依题意知AB为抛物线的通径,|AB|=2p=4,|CD|=2|AB|=8,
显然满足条件的直线CD有两条,
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x-1}\end{array}\right.$得:x2-6x+1=0,x1+x2=6,此时|CD|=x1+x2+p=8,x+y+1=0符合题意.
同理,x+y-1=0也符合题意.
故答案是:x+y+1=0或x+y-1=0.

点评 本题主要考查了抛物线的性质,直线的一般式方程.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,sin2A+sinAsinB=6sin2B.
(1)求$\frac{BC}{AC}$的值;
(2)若$cosC=\frac{3}{4}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),左右焦点为F1、F2,右顶点为A,上顶点为B,且|AB|=$\frac{{\sqrt{7}}}{2}$|F1F2|.
(1)求椭圆E的方程;
(2)直线l:y=-x+m与椭圆E交于C、D两点,与以F1、F2为直径的圆交于M、N两点,且$\frac{{\sqrt{7}|CD|}}{|MN|}$=$\frac{36}{7}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\left\{\begin{array}{l}\frac{a}{x},x>1\\(2-3a)x+1,x≤1\end{array}$是R上的减函数,则实数R的取值范围是 (  )
A.$(\frac{2}{3},1)$B.$[\frac{3}{4},1)$C.$(\frac{2}{3},\frac{3}{4}]$D.($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx,g(x)=x-$\frac{1}{2}$x2
(Ⅰ)若点P是函数f(x)=lnx上任意一点,求点P到直线y=x+1的最小距离;
(Ⅱ)当x>e时,求证函数f(x)=lnx的图象位g(x)=x-$\frac{1}{2}$x2图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知反比例函数y=$\frac{6}{x}$的图象与正比例函数y=$\frac{2}{3}$x的图象交于A,B两点,B点坐标为(-3,-2),则A点的坐标为(  )
A.(-1,-6)B.(1,6)C.(3,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC,CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.由曲线y=x 2-1,直线x=0,x=2和x轴围成的封闭图形的面积(如图)可表示为(  )
A.${∫}_{0}^{2}$(x 2-1)dxB.${∫}_{0}^{2}$|(x 2-1)|dx
C.|${∫}_{0}^{2}$(x 2-1)dx|D.${∫}_{0}^{1}$(x 2-1)dx+${∫}_{1}^{2}$(x 2-1)dx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Rt△ABC的顶点分别为A(1,2),B(-1,-2).,C(1,-2),圆E是△ABC的外接圆.
(I)求圆E的方程;
(II)求直线lmx-y-m+1=0被圆E截得的最短弦长及对应的直线l的方程.

查看答案和解析>>

同步练习册答案