精英家教网 > 高中数学 > 题目详情
8.已知等差数列{an}的前15项之和为$\frac{15π}{4}$,则tan(a7+a8+a9)=(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-1D.1

分析 由等差数列的前n项和公式得到a8=$\frac{π}{4}$,从而得到a7+a8+a9=$3{a}_{8}=\frac{3π}{4}$,由此能求出tan(a7+a8+a9)的值.

解答 解:∵等差数列{an}的前15项之和为$\frac{15π}{4}$,
∴${S}_{15}=15{a}_{8}=\frac{15π}{4}$,解得a8=$\frac{π}{4}$.
又∵a7+a8+a9=$3{a}_{8}=\frac{3π}{4}$,
∴tan(a7+a8+a9)=tan($\frac{3π}{4}$)=-1.
故选:C.

点评 本题考查正切函数值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.(x-$\frac{1}{{x}^{2}}$)9的展开式中系数最大的项为$\frac{126}{{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)求$y=sin(2x-\frac{π}{6})+2,x∈[{-\frac{π}{2},\frac{π}{3}}]$的值域.
(2)求函数y=sin2x-acosx+3,x∈[0,π]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若抛物线y2=2px(p>0)的准线经过椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的一个焦点,则该抛物线的准线方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{{\sqrt{x-2}}}{{2\sqrt{x+1}}}$的定义域是(  )
A.(-1,+∞)B.[2,+∞)C.(-∞,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线C:y2=4x,圆F:(x-1)2+y2=1,过点(1,0)的直线l与抛物线C及圆F交于四点,从上到下依次为A、B、C、D,若|AB|=3,则|CD|=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将函数f(x)=cosx的图象向右平移$\frac{π}{2}$个单位后所得的图象的函数解析式为y=sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=x2sinx,则$f'(\frac{π}{2})$=(  )
A.$\frac{π^2}{2}$B.$-\frac{π^2}{2}$C.$-\frac{π^2}{4}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知偶函数f(x)的定义域为集合M={x|ln|x|≤5},f(5)=50,当x>0且x∈M时,xf′(x)<2f(x)恒成立,则不等式$\frac{f(x)}{{x}^{2}}$≤2的解集为(  )
A.[-e5,-5]∪[5,e5]B.[-5,0)∪(0,5]C.[-e2,-2]∪[2,e2]D.[-2,0]∪(0,2]

查看答案和解析>>

同步练习册答案