如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,
.
(Ⅰ)求证:CD⊥平面ADD1A1;
(Ⅱ)若直线AA1与平面AB1C所成角的正弦值为,求k的值.
(Ⅰ)见解析(Ⅱ)1
解析试题分析:(Ⅰ)取CD的中点为E,连结BE,则ADEB为平行四边形,所以ADBE=4k,所以BC2=BE2+EC2,所以BE⊥DC,所以AD与BC垂直,AA1⊥面ABCD,所以AA1⊥CD,所以CD垂直面AA1D1D;(Ⅱ)以D为原点,DA,DC,DD1为轴,建立空间直角坐标系,写出A、A1,B1,C的坐标,求出面AB1C的一个法向量,算出向量坐标,计算出这两个向量的夹角,再利用向量夹角与线面角关系,列出关于k的方程,若能解出k值..
试题解析:(Ⅰ)取CD的中点E,连结BE.
∵AB∥DE,ABDE3k,∴四边形ABED为平行四边形, 2分
∴BE∥AD且BEAD4k.
在△BCE中,∵BE4k,CE3k,BC5k,∴BE2+CE2BC2,
∴∠BEC90°,即BE⊥CD,
又∵BE∥AD,∴CD⊥AD. 4分
∵AA1⊥平面ABCD,CD平面ABCD,
∴AA1⊥CD.又AA1∩ADA,
ADD1A1. 6分
(Ⅱ)以D为原点,,,的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,
则
所以,,.
设平面AB1C的法向量n(x,y,z),
则由得
取y2,得. 9分
设AA1与平面AB1C所成角为θ,则
sin θ|cos〈,n〉|,
解得k1,故所求k的值为1. 12分
考点:面面垂直的性质,线面垂直的判定,线面角的计算,推理论证能力,运算求解能力,空间想象能力
科目:高中数学 来源: 题型:解答题
如图2,四边形为矩形,⊥平面,,作如图3折叠,折痕,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且⊥.(1)证明:⊥平面;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为,与的交点为.
(1)证明:为的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,,梯形的面积为6,求平面与底面所成二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在边长为的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图所示的三棱柱.
(1)求证:平面;
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com