精英家教网 > 高中数学 > 题目详情
8.设函数f(x)在x0处可导,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=(  )
A.f′(x0B.-f′(x0C.f(x0D.-f(x0

分析 利用导数的定义即可得出.

解答 解:设函数f(x)在x0处可导,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-$\underset{lim}{△x→0}$$\frac{f(x-△x)-f({x}_{0})}{-△x}$=-f′(x0),
故选:B.

点评 本题考查了导数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:ρ=(ρ•cosθ+4)•cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).
(Ⅰ)求C1,C2的直角坐标方程;
(Ⅱ)C与C1,C2交于不同四点,这四点在C上的排列顺次为H,I,J,K,求||HI|-|JK||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={y|y=-x2+2x+3,x∈R},B={y|y=5x2-10x+3,x∈R},则A∩B=(  )
A.[-2,4]B.(-2,4]C.[-2,4)D.(-2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于任意实数a,b,c,有以下命题:
①“a=b”是“ac=bc”的充要条件;
②“a+5是无理数”是“a是无理数”的充要条件;
③“(x-a)(x-b)=0”是“x=a”的充分条件;
④“a<5”是“a<3”的必要条件.
其中正确命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从1,2,3,4,5这五个数字中任取三个不同的数字,求下列事件的概率.
(1)A={三个数字中不含1和5}
(2)B={三个数字中含1或5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{2}sinx-\frac{{\sqrt{3}}}{2}cosx$.
(1)求函数的值域和最小正周期;
(2)求函数的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\frac{lgx}{x}$的导数是(  )
A.$\frac{1-ln10•lgx}{{{x^2}•ln10}}$B.$\frac{1+ln10•lnx}{{{x^2}•ln10}}$
C.$\frac{1+ln10•lgx}{x•ln10}$D.$\frac{1-ln10•lgx}{x•ln10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从集合{0,1,2,3,4,5}中任取两个互不相等的数x,y组成复数z=x+yi,其中虚数的个数有(  )
A.5B.30C.25D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(cosx,-1),$\overrightarrow{b}$=($\sqrt{3}$sinx,-$\frac{1}{2}$),函数$f(x)=(\overrightarrow a+\overrightarrow b)•\overrightarrow a-2$.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数∴的图象经过点$(A,\;\frac{1}{2})$,b、a、c成等差数列,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,求a的值.

查看答案和解析>>

同步练习册答案