精英家教网 > 高中数学 > 题目详情
7.某同学在借助计算器求“方程lgx=2-x的近似解(精确到0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x=1.8.那么他所取的x的4个值中最后一个值是1.8125.

分析 根据“二分法”的定义,每次把原区间缩小一半,且保证方程的近似解不能跑出各个小的区间即可.

解答 解:根据“二分法”的定义,最初确定的区间是(1,2),又方程的近似解是x≈1.8,
故后4个区间分别是(1.5,2),(1.75,2),( 1.75,1.875),(1.75,1.8125),
故它取的4个值分别为 1.5,1.75,1.875,1.8125,最后一个值是1.8125.
故答案为:1.8125.

点评 本题考查了二分法的定义,以及利用二分法求方程的近似解的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若命题“?x0∈R使得${x_0}^2+a{x_0}+a+3<0$”为假命题,则实数a的取值范围是(  )
A.[-6,2]B.[-6,-2]C.[-2,6]D.$[{2-\sqrt{7}{,_{\;}}2+\sqrt{7}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.m为何实数时,复数z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)虚数;
(2)若z<0,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y为正实数,且x+2y=1,则$\sqrt{xy}$的最大值是$\frac{\sqrt{2}}{4}$,$\frac{2x+y}{xy}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数f(x)=sin2x-x,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax-1,其中e为自然对数的底数,e=2.71728…
(1)求f(x)的单调递增区间;
(2)设a=1,f(x)≥mx+n-1,其中m,n∈R,求(m+1)n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-$\frac{1}{3}$x3+4x+$\frac{71}{3}$,则使该生产厂家获取最大年利润的年产量为(  )
A.3万件B.1万件C.2万件D.7万件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.编写程序,输入正整数n,计算它的阶乘n!(n!=n×(n-1)×…×3×2×1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列各三角函数值
(1)sin$\frac{5π}{4}$;(2)cos(-$\frac{79π}{6}$);(3)tan(-675°)

查看答案和解析>>

同步练习册答案